首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The variation in graminoid species composition and diversity and the distribution of photosynthetic pathways among 66 wetlands in KwaZulu-Natal, South Africa, and within six of these wetlands was described and related to measured physical parameters, using multivariate and univariate techniques. Altitude, which ranged from 550 m to 2120 m, accounted for most variation among wetlands, with an almost complete turnover of species along this gradient. Landform setting was less important in explaining overall species composition, but relationships of individual species were revealed (e.g. Eleocharis dregeana showed an affinity for depressions). Within a wetland there was an almost complete turnover of species along a gradient of wetness, as described using soil morphological criteria. Most species were consistently associated with the same wetness zones across different wetland sites, e.g., Phragmites australis with the wettest zone, Pycreus macranthus with the intermediate zone, and Eragrostis plana with the least wet zone. The occurrence and abundance of different photosynthetic pathway types depended on altitude and degree of wetness. At high altitudes, C3 sedges, notably Carex acutiformis, dominated the wettest zone and C3 and C4 grasses and sedges dominated the intermediate and least wet zones. At mid altitudes, C3 and C4 sedges and C3 grasses dominated the wettest zone, C3 and C4 grasses and sedges dominated the intermediate zone and C4 grasses dominated the least wet zone. Low altitude sites showed a similar distribution of photosynthetic pathways as mid-altitude sites, but C3 species were less abundant. Species richness was positively associated with the log of wetland size and, at the level of an individual wetland, species richness and evenness were found to be consistently greater in the intermediate and least wet zone compared with the wettest zone. The management implications of the results are discussed in the light of continuing anthropogenic loss of wetlands in the study area and global climate change.  相似文献   

2.
In order to protect and understand the regeneration of riparian forests, it is important to understand the environmental conditions that lead to their vegetation differentiation. We evaluated the structure, composition, density and regeneration of woody species in forests along the river Safaroud in Ramsar forest in northern Iran in relation to elevation, soil properties and distance from the river. Using 60 transects located perpendicularly to river and 300 quadrats, we examined forests 0, 50, 100, 150 and 200 m from the stream along an elevation gradient spanning from 350 to 2,400 m a.s.l. We found that total density, regeneration, diameter and basal area of trees were significantly higher in the interior of the forest whereas shrub density was higher close to the river. The uneven-aged forest structure showed no significant differences among gradient from the river to the forest interior. Hydro-geomorphic processes, flooding, the elevation gradient, distance from the river and soil properties were the most important factors that influenced plant community distribution in relation to the river.  相似文献   

3.
4.
Solar ultraviolet-B (UV-B) radiation can be harmful for developing amphibians. As the UV-B dose increases with altitude, it has been suggested that high-altitude populations may have an increased tolerance to high levels of UV-B radiation as compared to lowland populations. We tested this hypothesis with the common frog (Rana temporaria) by comparing populations from nine altitudes (from 333 to 2450m above sea level). Eggs collected in the field were used for laboratory experiments, i.e., exposed to high levels of artificial UV-B radiation. Eggs were reared at 14+/-2 degrees C and exposed to UV treatments until hatching. Embryonic developmental rates increased strongly and linearly with increasing altitude, suggesting a genetic capacity for faster development in highland than lowland eggs. Body length at hatching varied significantly with UV-B treatments, being lower when eggs developed under direct UV-B exposure. Body length at hatching also increased as the altitude of populations increased, but UV-B exposure times were shorter as altitude of population increased. However, the body length difference between exposed and non-exposed individuals in each population decreased as altitude of populations increased, suggesting a costly effect of UV exposure on growth. Type of UV exposure did not influence the mean rates of embryonic mortality and deformity, but both mortality and deformity rates increased as the altitude of populations increased (while UV-B exposure duration decreased). The effect of UV-B on body length at hatching, mortality, and deformities suggests that the sensitivity to UV-B varied among populations along the altitudinal gradient. These results are discussed in evolutionary terms, specifically the potential of R. temporaria high-altitude populations to develop local genetic adaptation to high levels of UV-B.  相似文献   

5.
The aim of the present study was to analyse the soil properties in different seasons at varying altitudes. The study was carried out in Dhanaulti forest, falls under temperate region of Garhwal Himalaya in Uttarakhand State, India. Physical properties and chemical properties of the soil were estimated using all standard procedures. In the present study, sand particles were reported highest (77.21%) in rainy season followed by in summer (70.17%) and winter (63.15%) seasons. The silt and clay particles also followed similar trend as sand which reduced in order of rainy > summer > winter seasons. The water holding capacity of soil ranged from 62.13 to 67.70%. The majority of soils were dark brown to dark yellowish brown in colour, which is considered having higher potential of water holding capacity. The values of nitrogen ranged between 0.01 to 0.012% (upper altitude), 0.009 to 0.011% (middle altitude) and 0.007 to 0.011% (lower altitude). The effects of altitudes and seasons in nitrogen show significant variation. Potassium ranged between 102.29 and 206.22 kg ha? 1. The combined effect of season and soil-depth also showed significant variation in level of potassium. The soil organic carbon values were between 0.14 and 0.19% and pH values ranged between 6.33 and 6.75 which was slightly acidic in nature.  相似文献   

6.
在西双版纳海拔800~1400 m的热带森林中,设置海拔梯度垂直样带和样地,研究热带森林群落土壤种子库对海拔梯度的响应。结果发现:(1)土壤种子库的密度和物种丰富度在海拔800 m最大,分别为10540±1578粒·m-2和71个种,最小的土壤种子库密度和物种丰富度则分别出现在海拔1400 m和1200 m。基于Bray-Curtis相似性系数,对4个海拔的土壤种子库物种进行了NMDS排序,发现不同海拔土壤种子库物种组成存在显著的空间分异。(2)土壤种子库中的异质性成分丰富度也因海拔不同存在差异,海拔800 m有9个异质性成分种,海拔1400 m只有5个;而异质性成分种的多度却在海拔1200 m最大。(3)土壤种子库与地上植被的相似性在4个海拔带都低于15%。研究表明,海拔变化对土壤种子库的密度、物种组成格局都能产生显著影响。  相似文献   

7.
? Altitudinal gradients strongly affect the diversity of plants and animals, yet little is known about the altitudinal effects on the distribution of microorganisms, including ectomycorrhizal fungi. ? By combining morphological and molecular identification methods, we addressed the relative effects of altitude, temperature, precipitation, host community and soil nutrient concentrations on species richness and community composition of ectomycorrhizal fungi in one of the last remaining temperate old-growth forests in Eurasia. ? Molecular analyses revealed 367 species of ectomycorrhizal fungi along three altitudinal transects. Species richness declined monotonically with increasing altitude. Host species and altitude were the main drivers of the ectomycorrhizal fungal community composition at both the local and regional scales. The mean annual temperature and precipitation were strongly correlated with altitude and accounted for the observed patterns of richness and community. ? The decline of ectomycorrhizal fungal richness with increasing altitude is consistent with the general altitudinal richness patterns of macroorganisms. Low environmental energy reduces the competitive ability of rare species and thus has a negative effect on the richness of ectomycorrhizal fungi. Because of multicollinearity with altitude, the direct effects of climatic variables and their seasonality warrant further investigation at the regional and continental scales.  相似文献   

8.
Non‐vascular plant distribution patterns were examined in three microhabitats along an altitudinal gradient on a recent lava flow of the Piton de la Fournaise volcano (La Réunion, Mascarene archipelago). The uniform nature of the lava flow provides an excellent system to study the relationship between altitude and species diversity and distribution, and at the same time avoiding confusing multiple effects of substrate and vegetation heterogeneity. Non‐vascular plants were surveyed with quadrats within an altitudinal range from 250 m to 850 m a.s.l. Fine‐scale variations in bryophyte communities between three ecological microhabitats (the ground and on the rachises of two fern species) were investigated. Three specific questions were addressed: (1) What is the species diversity of bryophyte communities on a 19‐year‐old lava flow? (2) How does altitude influence the diversity and distribution of bryophytes on a lava flow? (3) Does microhabitat variation control bryophyte diversity? In our study, bryophyte diversity increased with altitude. Unexpectedly, species richness was very high; 70 species of bryophytes were recorded including nine new records for the island. Diversity was also controlled by ecological microhabitats. Bryophyte species were structured into six categories according to altitude and microhabitat preferences. Results suggested that the high diversity of these cryptic organisms on this lava flow is fostered in part by their host substrate and their adaptative strategies on new substrates. On a broader scale, it was concluded that lava flows as primary mineral environments are important to conserve, as they support a high diversity of pioneer organisms that constitute the early stages of the development of La Réunion's remnant lowland rainforest.  相似文献   

9.
Little is known about the soil seed bank and the influence of plant communities on the interaction between the seed bank and aboveground vegetation in the Hyrcanian temperate deciduous forest. We surveyed species composition and diversity of the persistent soil seed bank and the aboveground vegetation in six community types in old-growth Hyrcanian Box tree (Buxus hyrcana) stands in northern Iran. Fifty-two species with an average of 3,808 seeds/spores m−2 germinated; forbs accounted for 64% of the seed bank flora. Thirty-four species in the aboveground vegetation were not presented in the seed bank, 32 species in the seed bank were not found in the vegetation, and 20 species were in both. The dominant tree species were Diospyros lotus and Alnus subcordata with an average of 17 and 4.6 seeds m−2, respectively. Our results suggest that (1) vernal geophytes and shade-tolerant perennials are not incorporated in the seed bank, (2) early successional species are well represented in the seed bank, (3) plant community type has significant impacts on seed bank densities, and seed bank richness and diversity were significantly related to presence/absence of Box tree in the aboveground vegetation. The persistent seed bank contained species that potentially have a negative impact on the regeneration of forests, thus forest managers should retain old-growth Hyrcanian Box tree stands to conserve disturbance-sensitive indicator forest species.  相似文献   

10.
The woody species richness patterns in three 2–4 km long transects, approximately 1–3 km apart in a lowland (600–700 m) dryland around Lokapel in Turkana northern Kenya was analyzed in 2003 at 200–500 m intervals using the Point-Centred Quarter (PCQ) method involving 51 observation points. Transect 1 and 2 were set along ephemeral runoff channels locally known as lagga with wet season flow westwards from the Lokapel Hills to the Turkwell River. Transect 3 was a cross-cutting profile dissecting the area initially downhill from the Lokapel Hills and later gently uphill eastwards towards Lokichar. The altitude at each of the 51 observation sites was recorded using a GPS and the woody species identified through local knowledge and taxonomic aids. The results showed that the overall integrated altitudinal gradient for the three transects was approximately 100 m. A total of 43 species of trees and shrubs were identified. The Shannon index showed that Transect 2 had the highest diversity of woody species followed by Transect 1 and Transect 3 while the Sorensen’s index indicated qualitative dissimilarity between all the transects. The results of regression analysis indicated that woody species richness increased linearly with elevation in only one transect but regression analysis of height of woody plants and altitude indicated that only about 20% of the variation in the height of woody plants was accountable by altitude. The spatial analysis of woody species-richness and altitudinal gradient showed a dual peak pattern with the main richness peak in low lying areas below 700 m which was mainly within or close to the riparian floodplain environment of the Turkwell River. A minor richness peak was also identified in higher lying areas around the Lokapel hills. The species richness pattern was similar to the hump-shaped altitudinal species-richness pattern which has been recorded widely around the world but mainly in large-scale studies.  相似文献   

11.
Wang  Guohong  Zhou  Guangsheng  Yang  Limin  Li  Zhenqing 《Plant Ecology》2003,165(2):169-181
We studied the distribution pattern, species diversity and life-formspectra of plant communities along an altitudinal gradient in the mid-sectionofthe northern slopes of Qilianshan Mountains by means of multivariate analyses.Two data sets (167 species × 75 plots, 10 environmental variables ×75 plots), originated from the fieldworks in 1998–1999, were subjected toTWINSPAN and DCCA, resulting in 8 major plant communities: 1)Asterothamnus centraliasiaticus–Halogetonarachnoideus desert grassland on azonal substrates from 1450 to 1600m and 2) zonal Reaumuria soogorica desertgrassland on gravels from 1470 to 1900 m; 3) Stipaprzewalskii–Stipa purpurea montane grassland from 2200 to 2900m; 4) Polygonum viviparum alpine grasslandfrom 2900 to 3700 m; 5) Caraganastenophylla–Ajaniafruticulosa dry-warm shrubland from 2350 to 2800 m; 6)Sabina przewalskii mid-wet warm forest from 2700 to 3300m; 7) Picea crassifolia cold coniferousforestfrom 2450 to 3200 m; 8) Caragana jubatawet-cold alpine shrubland from 3100 to 3700 m. Species diversityand species richness of both grasslands and forests peaked at the intermediateportion of the elevational gradient. Evenness might be strongly influenced byeither biotic or abiotic factors at a local scale, while seems quiteindependentof an elevational gradient at landscape scales. Beta-diversity decreased from1500 to 3700 m, indicating that species turnover declined withincreased elevation. Both richness of life-form and total species richness in agiven altitudinal belt (gamma-diversity) peaked at intermediate elevations,while relative species richness of different life-form varied differently alongthe altitudinal gradient.  相似文献   

12.
13.
Tree-ring samples of Picea schrenkiana (Fisch. et Mey) were studied along an altitudinal gradient in the central Tianshan Mountains, and ring-width chronologies were developed for three sites at different altitudes: low-forest border (1600–1700 m a.s.l.), interior forest (2100–2200 m a.s.l.), and upper treeline (2600–2700 m a.s.l.). Annual ring-width variations were similar among the three sites but variability was greatest at the low-forest border site. The statistical characters of the chronologies showed that mean sensitivity (MS) and standard deviation (SD) decreased with increasing elevation. In other words, the response of tree growth to environmental changes decreased with increasing altitude. To understand the differing response of trees at different elevations to the environmental changes, response function analysis was used to study the relationships between tree-ring widths and mean monthly temperature and total monthly precipitation from 1961 to 2000. The results showed that precipitation was the most important factor limiting tree radial growth in the arid central Tianshan Mountains, precipitation in August of the prior growth year played an important role on tree's radial growth across the entire altitudinal gradient even at the cold, high-elevation treeline site. It is expected that with increasing altitude air temperature decreased and precipitation increased, the importance of precipitation on tree growth decreased, and the response of tree growth to environmental changes decreased, too. This conclusion may be helpful to understand and research the relationship between climatic change and tree growth in arid and semiarid area.  相似文献   

14.
We assessed the adaptive potential of seed and leaf phenology in 10 natural populations of sessile oak (Quercus petraea) sampled along two altitudinal transects using common garden experiments. Population differentiation for both phenological traits was observed with high-altitude populations germinating and flushing later than low altitude ones. However, high genetic variation and heritability values were also maintained within populations, despite slightly decreasing for dates of leaf unfolding with increasing altitude. We suggest that biotic and abiotic fluctuating selection pressures within populations and high gene flow are the main mechanisms maintaining high genetic variation for these fitness related traits. Moreover, changes in selection intensity and/or selection pressures along the altitudinal gradient can explain the reduction in genetic variation observed for leaf phenology. We anticipate that the maintenance of high genetic variation will be a valuable resource for future adaptation of sessile oak populations undergoing an upslope shift caused by climate change.  相似文献   

15.
16.
24 treefall gaps accumulated over a 10 year period along an altitudinal transectcovering 4.6ha on Mt. Hauhungatahi, Tongariro National Park, New Zealand were described quantitatively in terms of the area of damage (‘expanded gap’), the canopy opening (‘Tight-gap’) and the size of the root mound. Tree mortality and branch loss following cyclone Bola, 1988, were recorded. In each gap saplings were ranked by species according to their vigour. Pre-gap and post-gap vertical and horizontal branch growth rates were calculated. Effects in the subalpine forest (> 1050 m) were compared with those in the montane zone. Tree mortality was highly episodic, associated with major storms, and patchy. Falling canopy trees destroyed, on average, 1.3 additional trees (> 10 cm diameter at 1 m). About half the trees were uprooted and the remainder broken off. Uprooted angiosperm (canopy) trees frequently resprouted from their bases, gymnosperms rarely. Expanded gap area averaged 56 m2 in the sub-alpine forest and 88 m2 in the montane zone. Median expanded gap areas were about twice those of light gaps. Gap size frequency distribution was highly skewed. The largest gap was formed by a single Dacrydium cupressinum which destroyed six other trees creating a gap of ca. 0.03 ha. Expanded gaps, light gaps, and root mounds comprised 4.5, 2.8 and 0.1 % of the forest area in the sub-alpine zone, and 3.8, 2.5 and 0.06 % in the montane forest. These values represent 10 years of accumulation, and imply light gap ‘return times’ of 360 years for the sub-alpine and 400 years for the montane forest. These periods are in agreement with the known longevities of the canopy and emergent trees. Vertical shoot growth rate was about twice that in the horizontal plane, and both increased following gap formation. The relative increase was greatest in the subalpine forest. Using the measured growth rates it is estimated that gaps of median dimensions are filled by lateral extension growth in 31–44 yr. Saplings require longer to reach the mean canopy height and consequently require large (multiple tree) gaps or sequential gap events.  相似文献   

17.
庐山不同海拔森林土壤有机碳密度及分布特征   总被引:16,自引:0,他引:16  
Du YX  Wu CJ  Zhou SX  Huang L  Han SM  Xu XF  Ding Y 《应用生态学报》2011,22(7):1675-1681
为阐明地处中亚热带北部的庐山森林土壤有机碳沿海拔梯度的分布特征,2010年7—8月,分别在庐山的南、北坡按200 m的高差选择6个和5个不同海拔采样点,分层(0~10、10~20、20~30、30~40和>40 cm)采集土样,测定土壤容重、有机碳含量及有机碳密度.结果表明:海拔和坡向显著影响森林土壤有机碳密度.在北坡,随海拔升高,土壤有机碳呈逐渐增加趋势,土壤有机碳含量与土壤容重和pH值呈显著负相关关系;在南坡则没有明显规律.随土层加深,土壤有机碳逐渐下降.北坡和南坡土壤有机碳密度分别为7.07~10.34 kg.m-2和6.03~12.89 kg.m-2.南坡土壤有机碳密度随海拔梯度和土层深度变化的变异性较大,原始植被的破坏和人工林的建立可能是影响土壤有机碳空间分布的重要因素之一.  相似文献   

18.
The aim of this study was to explore the environmental drivers of the aquatic macrophyte assemblage in a large, heterogeneous Spanish region covering a wide altitudinal range. We hypothesized that physicochemical variables affecting assemblages would differ depending on altitude. The study was conducted in 46 plateau ponds and 21 mountain ponds. Our results revealed a shift in hydrophyte assemblage composition and structure along an altitude and water chemistry gradient. However, altitude was not a good predictor of species richness. Conductivity and nutrient concentrations were higher in plateau ponds than in mountain ponds and binary logistic regression showed that conductivity was the best variable for differentiating between both pond types. Canonical correspondence analysis indicated that conductivity was the main factor responsible for the species distribution in both pond types. Generalized linear models showed that in plateau ponds, total phosphorus and mean depth were the strongest predictors of submerged macrophyte coverage, and no model could be created for richness. In the mountain ponds, conductivity and pond area explained coverage of submerged plants, while richness was related to pond area. Our results corroborated the hypothesis to be tested, and the conclusions obtained may be of relevance for making decisions on conservation and restoration.  相似文献   

19.

Background and Aims

Soil water repellency (SWR, i.e. the reduced affinity for water due to the presence of hydrophobic coatings on soil particles) has relevant hydrological implications on the rate of water infiltration, surface runoff, and overland flow. Here, we test how SWR varies along a 2490 m altitudinal gradient encompassing six ecosystems including Mediterranean, Temperate, and Alpine vegetation types.

Methods

Water repellency, measured by the Molarity of an Ethanol Droplet (MED) test, was quantified in 80 soil samples collected for 16 different elevations. Soil quality was assessed by measuring soil texture, pH, organic carbon, salinity, and nutrient availability.

Results

SWR showed a unimodal pattern along the 2490 m transect, peaking at intermediate elevations. Unexpectedly, SWR was the highest under broad-leaf deciduous forests, and the lowest under evergreen, sclerophyllous Mediterranean vegetation types. The soil organic carbon content, and the pH were the main determinants of water repellency, showing respectively a positive, and a negative correlation with the SWR. In contrast, soil texture and salinity resulted unrelated to the SWR.

Conclusions

With this study we demonstrated a linkage between SWR, vegetation type and soil pH and organic carbon content along the elevation gradient. Further studies are needed to explicitly evaluate the impact SRW on erosion risk at catchment scale in the context of climatic change.
  相似文献   

20.
Márquez EJ  Rada F  Fariñas MR 《Oecologia》2006,150(3):393-397
The tropical high Andes experience greater daily temperature oscillations compared to seasonal ones as well as a high frequency of night frost occurrence year round. Survival of organisms, under such environmental conditions, has been determined by selective forces which have evolved into adaptations including avoidance or tolerance to freezing. These adaptations have been studied in different species of trees, shrubs and perennial herbs in páramo ecosystems, while they have not been considered in grasses, an important family of the páramo. In order to understand survival of Poaceae, resistance mechanisms were determined. The study was performed along an altitudinal gradient (2,500–4,200 m a.s.l.) in the páramo. Supercooling capacity and frost injury temperature were determined in nine species in order to establish cold resistance mechanisms. Grasses registered a very low supercooling capacity along the altitudinal gradient, with ice formation between −6 and −3°C. On the other hand, frost injury temperature oscillated between −18 and −7°C. Our results suggest that grasses exhibit freezing tolerance as their main cold resistance mechanism. Since grasses grow at ground level, where greatest heat loss takes place, tolerance may be related to this life form as reported for other small life forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号