首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The recessive fgr gene on chromosome 8 is associated with rice fragrance. It has been reported that this gene is a non-functional badh2 allele and that the functional Badh2 allele encoding putative betaine aldehyde dehydrogenase (BADH2) could render rice non-fragrant. Here we report the discovery of a new badh2 allele and the development of functional markers for the badh2 locus. A total of 24 fragrant and ten non-fragrant rice varieties were studied and sequenced for their Badh2/badh2 loci. Of the 24 fragrant rice varieties, 12 were found to have the known badh2 allele (badh2-E7), which has an 8-bp deletion and three single nucleotide polymorphisms (SNPs) in exon 7; the others had a novel null badh2 allele (badh2-E2), which has a sequence identical to that of the Badh2 allele in exon 7, but with a 7-bp deletion in exon 2. Both null badh2 alleles are responsible for rice fragrance. Based on sequence divergence amongst the functional Badh2 and two null badh2 alleles, we developed functional markers which can be easily used to distinguish non-fragrant from fragrant rice and to differentiate between two kinds of fragrant rice. These functional markers will find their usefulness in breeding for fragrant rice varieties via marker-assisted selection. Weiwei Shi and Yi Yang contributed equally to this work.  相似文献   

2.
In this study, we investigated the cause and origin of fragrance in NERICA1, a fragrant rice inbred line developed from an interspecific cross between two non-fragrant parents. The genetic cause of fragrance in NERICA1 was found to be due to a previously reported mutation in the BADH2 gene, the same allele responsible for the majority of modern fragrant rice varieties. Haplotype analysis around the BADH2 gene in NERICA1, its parents, and 95 other varieties carrying the badh2.1 allele identified the source of the badh2.1 allele in NERICA1 was a fragrant tropical japonica variety, WAB638-1, which had been growing in the vicinity of the NERICA1 nursery during varietal development. The allele-specific marker for the badh2.1 allele consistently predicted fragrance in the diverse African germplasm tested, making it very useful for marker-assisted breeding of fragrant rice varieties in Africa.  相似文献   

3.
Discovery of new fragrance alleles provides important genetic resources for breeding fragrant rice. In this study, a hybrid complementation test demonstrated the association of a new fragrance allele without mutation in the coding region with flavor formation in a fragrant rice variety Nankai 138. The new allele (badh2-p-5′UTR) has a 3-bp deletion in the 5′ untranslated region and an 8-bp insertion in the promoter (?1,314 site upstream from the initiation codon). Surprisingly, we found that there is also an 8-bp insertion in the promoter of the badh2-E7 allele. We developed a new sequence tagged site functional marker to identify the badh2-p-5′UTR and badh2-E7 alleles according to the 8-bp insertion in their promoters. A cleaved amplified polymorphic sequence (AluI) functional marker targeting a common base substitution in the intron 2 of three badh2 alleles, viz. badh2-p-5′UTR, badh2-E7 and badh2-E2, was developed to identify diverse genotypes for fragrance in rice. Based on the results of sequence alignments among the three badh2 alleles, we suggest that the badh2-E7 and badh2-p-5′UTR alleles may have the same genetic origin. In addition, the genetic distance between the badh2-E7 and badh2-p-5′UTR alleles may be closer than that between the badh2-E2 and the badh2-p-5′UTR alleles, or between the badh2-E2 and the badh2-E7 alleles.  相似文献   

4.
Asian cultivated rice(Oryza sativa L.),an important cereal crop worldwide,was domesticated from its wild ancestor 8000 years ago.During its long-term cultivation and evolution under diverse agroecological conditions, Asian cultivated rice has differentiated into indica and japonica subspecies.An effective method is required to identify rice germplasm for its indica and japonica features,which is essential in rice genetic improvements.We developed a protocol that combined DNA extraction from a single rice seed and the insertion/deletion(InDel) molecular fingerprint to determine the indica and japonica features of rice germplasm.We analyzed a set of rice germplasm,including 166 Asian rice varieties,two African rice varieties,30 accessions of wild rice species,and 42 weedy rice accessions,using the single-seeded InDel fingerprints(SSIF).The results show that the SSIF method can efficiently determine the indica and japonica features of the rice germplasm.Further analyses revealed significant indica and japonica differentiation in most Asian rice varieties and weedy rice accessions.In contrast,African rice varieties and nearly all the wild rice accessions did not exhibit such differentiation.The pattern of cultivated and wild rice samples illustrated by the SSIF supports our previous hypothesis that indica and japonica differentiation occurred after rice domestication under different agroecological conditions.In addition,the divergent pattern of rice cultivars and weedy rice accessions suggests the possibility of an endoferal origin(from crop)of the weedy rice included in the present study.  相似文献   

5.
The cultivated rice (Oryza sativa L.) has two subspecies, indica and japonica. The japonica rice germplasm has a narrower genetic diversity compared to the indica subspecies. Rice breeders aim to develop new varieties with a higher yield potential, with enhanced resistances to biotic and abiotic stresses, and improved adaptation to environmental changes. In order to face some of these challenges, japonica rice germplasm will have to be diversified and new breeding strategies developed. Indica rice improvement could also profit from more “genepool mingling” for which japonica rice could play an important role. Interesting traits such as low-temperature tolerance, and wider climate adaptation could be introgressed into the indica subspecies. In the past decade, huge developments in rice genomics have expanded our available knowledge on this crop and it is now time to use these technologies for improving and accelerating rice breeding research. With the full sequence of the rice genome, breeders may take advantage of new genes. Also new genes may be discovered from the genepool of wild relatives, or landraces of the genus Oryza, and incorporated into elite japonica cultivars in a kind of “gene revolution” program. Expectedly, new technologies that are currently being optimized, aiming for novel gene discovery or for tracking the regions under selection, will be suggested as new breeding approaches. This paper revisits breeding strategies successfully employed in indica rice, and discusses their application in japonica rice improvement (e.g. ideotype breeding, wide hybridization and hybrid performance).  相似文献   

6.

Main conclusion

Whole-genome re-sequencing of weedy rice from southern China reveals that weedy rice can originate from hybridization of domesticated indica and japonica rice.

Abstract

Weedy rice (Oryza sativa f. spontanea Rosh.), which harbors phenotypes of both wild and domesticated rice, has become one of the most notorious weeds in rice fields worldwide. While its formation is poorly understood, massive amounts of rice genomic data may provide new insights into this issue. In this study, we determined genomes of three weedy rice samples from the lower Yangtze region, China, and investigated their phylogenetics, population structure and chromosomal admixture patterns. The phylogenetic tree and principle component analysis based on 46,005 SNPs with 126 other Oryza accessions suggested that the three weedy rice accessions were intermediate between japonica and indica rice. An ancestry inference study further demonstrated that weedy rice had two dominant genomic components (temperate japonica and indica). This strongly suggests that weedy rice originated from indica-japonica hybridization. Furthermore, 22,443 novel fixed single nucleotide polymorphisms were detected in the weedy genomes and could have been generated after indica-japonica hybridization for environmental adaptation.  相似文献   

7.
通过分析籼稻93-11和粳稻培矮64S的叶绿体全基因组,优化和构建了籼粳分化的叶绿体分子标记ORF100和ORF29-TrnCGCA的多重PCR。应用这个多重PCR对200余份世界各地杂草稻和其它水稻材料进行分析。结果表明:杂草稻中有明显的叶绿体籼粳分化,表现出明显的地域性,且与传统的中国栽培稻的南籼北粳能较好的对应。推测粳型杂草稻可能是栽培稻突变或粳型水稻(作母本)与其它类型水稻材料杂交而形成的。  相似文献   

8.
Sequence comparisons of ammonium transporter 1?C2 genes (OsAMT1-2) in different rice accessions revealed a MITE insertion in the upstream region of the gene. The 391-bp MITE, classified as a Mutator superfamily member and named Imcrop, included terminal inverted repeat (TIR) and 9-bp target site duplication (TSD) sequences. We identified 151 Imcrop elements dispersed on 12 chromosomes of the japonica reference genome. Of these, 12.6% were found in genic regions and 33.1% were located within 1.5 kb of annotated rice genes. We constructed comparative insertion maps with 111 and 102 intact Imcrop elements in the japonica and indica reference genomes, respectively. The Imcrop elements showed relatively even distribution across all chromosomes although their frequency was higher on chromosomes 1, 3, and 4 in both genomes. Seventy seven Imcrop elements were detected in both subspecies, whereas 34 and 25 insertions were found only in the japonica or indica genome, respectively. We compared insertion polymorphisms of 19 Imcrop elements found inside genes in 48 Korean rice cultivars, consisting of 42 japonica and six Tongil-types (indica-japonica cross). Thirteen insertions were common to all cultivars indicating these elements were present before indica-japonica divergence. The six other elements showed insertion polymorphisms among accessions, showing their recent insertion history or no critical positive effect of their insertion on the rice genome.  相似文献   

9.
Molecular Evolution of the TAC1 Gene from Rice (Oryza sativa L.)   总被引:1,自引:0,他引:1  
Tiller angle is a key feature of the architecture of cultivated rice(Oryza sativa),since it determines planting density and influences rice yield.Our previous work identified Tiller Angle Control 1(TACl) as a major quantitative trait locus that controls rice tiller angle.To further clarify the evolutionary characterization of the TACl gene,we compared a TACl-containing 3164-bp genomic region among 113 cultivated varieties and 48 accessions of wild rice,including 43 accessions of O.rufipogon and five accessions of O.nivara.Only one single nucleotide polymorphism(SNP),a synonymous substitution,was detected in TACl coding regions of the cultivated rice varieties, whereas one synonymous and one nonsynonymous SNP were detected among the TACl coding regions of wild rice accessions.These data indicate that little natural mutation and modification in the TACl coding region occurred within the cultivated rice and its progenitor during evolution.Nucleotide diversities in the TACl gene regions of O.sativa and O.rufipogon of 0.00116 and 0.00112,respectively, further indicate that TACl has been highly conserved during the course of rice domestication.A functional nucleotide polymorphism (FNP) of TACl was only found in the japonica rice group.A neutrality test revealed strong selection,especially in the 3’-flanking region of the TACl coding region containing the FNP in the japonica rice group.However,no selection occurred in the indica and wild-rice groups.A phylogenetic tree derived from TACl sequence analysis suggests that the indica and japonica subspecies arose independently during the domestication of wild rice.  相似文献   

10.
The genomic nucleotide sequences of japonica rice (Sasanishiki and Nipponbare) contained about 2.7-kb unique region at the point of 0.4-kb upstream of the OsPsbS1 gene. In this study, we found that japonica rice with a few exceptions possessing such DNA sequences [denoted to OsMULE-japonica specific sequence (JSS)] is distinct by the presence of Mutator-like-element (MULE). Such sequence was absent in most of indica cultivars and Oryza glaberrima. In OsMULE-JSS1, we noted the presence of possible target site duplication (TSD; CTTTTCCAG) and about 80-bp terminal inverted repeat (TIR) near TSD. We also found the enhancement ofOsPsbS1 mRNA accumulation by intensified light, which was not associated with the DNA methylation status in OsMULE/JSS. In addition, O. rufipogon, possible ancestor of modern rice cultivars was found to compose PsbS gene of either japonica (minor) or indica (major) type. Transient gene expression assay showed that the japonica type promoter elevated a reporter gene activity than indica type.  相似文献   

11.
China is the largest rice-producing country, but the genomic landscape of rice diversity has not yet been clarified. In this study, we re-sequence 1070 rice varieties collected from China(400) and other regions in Asia(670). Among the six major rice groups(aus, indica-I, indica-II, aromatic, temperate japonica, and tropical japonica), almost all Chinese varieties belong to the indica-II or temperate japonica group. Most Chinese indica varieties belong to indica-II, which consists of two subgroup...  相似文献   

12.
13.
Global dissemination of a single mutation conferring white pericarp in rice   总被引:3,自引:0,他引:3  
Here we report that the change from the red seeds of wild rice to the white seeds of cultivated rice (Oryza sativa) resulted from the strong selective sweep of a single mutation, a frame-shift deletion within the Rc gene that is found in 97.9% of white rice varieties today. A second mutation, also within Rc, is present in less than 3% of white accessions surveyed. Haplotype analysis revealed that the predominant mutation originated in the japonica subspecies and crossed both geographic and sterility barriers to move into the indica subspecies. A little less than one Mb of japonica DNA hitchhiked with the rc allele into most indica varieties, suggesting that other linked domestication alleles may have been transferred from japonica to indica along with white pericarp color. Our finding provides evidence of active cultural exchange among ancient farmers over the course of rice domestication coupled with very strong, positive selection for a single white allele in both subspecies of O. sativa.  相似文献   

14.
Tiller angle is one of the most important components of the ideal plant architecture that can greatly enhance rice grain yield. Understanding the genetic basis of tiller angle and mining favorable alleles will be helpful for breeding new plant-type varieties. Here, we performed genome-wide association studies (GWAS) to identify genes controlling tiller angle using 529 diverse accessions of Oryza sativa including 295 indica and 156 japonica accessions in two environments. We identified 7 common quantitative trait loci (QTLs), including the previously reported major gene Tiller Angle Control 1 (TAC1), in the two environments, 10 and 13 unique QTLs in Hainan and Wuhan, respectively. More QTLs were identified in indica than in japonica, and three major QTLs (qTA3, qTA1b/DWARF2 (D2) and qTA9c/TAC1) were fixed in japonica but segregating in indica, which explained the wider variation observed in indica compared with that in japonica. No common QTLs were identified between the indica and japonica subpopulations. Mutant analysis for the candidate gene of qTA3 on chromosome 3 indicated a novel gene, Tiller Angle Control 3 (TAC3), encoding a conserved hypothetical protein controlling tiller angle. TAC3 is preferentially expressed in the tiller base. The ebisu dwarf (d2) mutant exhibited a decreased tiller angle, in addition to its previously described abnormal phenotype. A nucleotide diversity analysis revealed that TAC3, D2 and TAC1 have been subjected to selection during japonica domestication. A haplotype analysis identified favorable alleles of TAC3, D2 and TAC1, which may be used for breeding plants with an ideal architecture. In conclusion, there is a diverse genetic basis for tiller angle between the two subpopulations, and it is the novel gene TAC3 together with TAC1, D2, and other newly identified genes in this study that controls tiller angle in rice cultivars.  相似文献   

15.
Although the overall structure of the chloroplast genome is generally conserved, several sequence variations have been identified that are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (GenBank: NC_017835 ) as a reference. Differential distribution of single‐nucleotide polymorphisms and INDELs across the rice chloroplast genome is suggestive of a region‐specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two aus type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that ‘Korean aus’ was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared the results to six rice chloroplast references. These data demonstrated that although nucleotide diversity is low in all strains tested, aus and indica have a higher nucleotide diversity than japonica.  相似文献   

16.
C-H Wang  X-M Zheng  Q Xu  X-P Yuan  L Huang  H-F Zhou  X-H Wei  S Ge 《Heredity》2014,112(5):489-496
Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments.  相似文献   

17.
Asian rice, Oryza sativa L., is one of the most important crop species. Genetic analysis has established that rice consists of several genetically differentiated variety groups, with two main groups, namely, O. sativa ssp. japonica kata and ssp. indica kata. To determine the genetic diversity of indica and japonica rice, 45 rice varieties, including domesticated rice and Asia common wild rice (O. rufipogon Griff.), were analyzed using sequence-related amplified polymorphism, target region amplified polymorphism, simple sequence repeat, and intersimple sequence repeat marker systems. A total of 90 indica- and japonica-specific bands between typical indica and japonica subspecies were identified, which greatly helped in determining whether domesticated rice is of the indica or japonica type, and in analyzing the consanguinity of hybrid rice with japonica, which were bred from indica and japonica crossed offspring. These specific bands were both located in the coding and non-encoding region, and usually connected with quantitative trait loci. Utilizing the indica-japonica-specific markers, japonica consanguinity was detected in sterile hybrid rice lines. Many indica-japonica-specific bands were found in O. rufipogon. This result supports the multiple-origin model for domesticated rice. Javanica exhibited a greater number of indica-japonica-specific bands, which indicates that it is a subspecies of O. sativa L.  相似文献   

18.
Functional molecular markers M7 and M2 have been developed based on the DNA sequence differences of badh2 between fragrant rice varieties and non fragrant varieties in intron2, intron 4, exon7 and exon 2 respectively. PCR analyses on genome DNA of exon7 mutated fragrant rice Wxiang 99075, exon2 mutated fragrant rice Wuxiang14,non fragrant rice 261S and the F1 plants by M7 and M2 showed that M7 and M2 could be absolutely used to the molecular marker assisted rice breeding experiments when exon7 mutated and exon2 mutated fragrant rice varieties are used as parents. The design of M7 primers took mutations both in exons and intrones into account. Moreover, taking 261S,Wxiang 99075 and Wuxiang14 as controls, the mutation sites of badh2 in 22 fragrant rice varieties were analyzed, it was showed that fragrant rice varieties could be classified into 3 types: exon 2 mutated fragrant rice, exon 7 mutated fragrant rice and non exon mutated fragrant rice. At the same time, the mutation sites of badh2 in the main fragrant rice varieties which are grown in Shanghai and the surrounding areas have been verified. This research laid an important foundation for molecular marker assisted selection for novel fragrant rice.  相似文献   

19.
To investigate the selective pressures acting on the protein-coding genes during the differentiation of indica and japonica, all of the possible orthologous genes between the Nipponbare and 93–11 genomes were identified and compared with each other. Among these genes, 8,530 pairs had identical sequences, and 27,384 pairs shared more than 90% sequence identity. Only 2,678 pairs of genes displaying a Ka/Ks ratio significantly greater than one were revealed, and most of these genes contained only nonsynonymous sites. The genes without synonymous site were further analyzed with the SNP data of 1529 O. sativa and O. rufipogon accessions, and 1068 genes were identified to be under positive selection during the differentiation of indica and temperate japonica. The positively selected genes (PSGs) are unevenly distributed on 12 chromosomes, and the proteins encoded by the PSGs are dominant with binding, transferase and hydrolase activities, and especially enriched in the plant responses to stimuli, biological regulations, and transport processes. Meanwhile, the most PSGs of the known function and/or expression were involved in the regulation of biotic/abiotic stresses. The evidence of pervasive positive selection suggested that many factors drove the differentiation of indica and japonica, which has already started in wild rice but is much lower than in cultivated rice. Lower differentiation and less PSGs revealed between the Or-It and Or-IIIt wild rice groups implied that artificial selection provides greater contribution on the differentiation than natural selection. In addition, the phylogenetic tree constructed with positively selected sites showed that the japonica varieties exhibited more diversity than indica on differentiation, and Or-III of O. rufipogon exhibited more than Or-I.  相似文献   

20.
Low temperature affects the rice plants at all stages of growth. It can cause severe seedling injury and male sterility resulting in severe yield losses. Using a mini core collection of 174 Chinese rice accessions and 273 SSR markers we investigated cold tolerance at the germination and booting stages, as well as the underlying genetic bases, by association mapping. Two distinct populations, corresponding to subspecies indica and japonica showed evident differences in cold tolerance and its genetic basis. Both subspecies were sensitive to cold stress at both growth stages. However, japonica was more tolerant than indica at all stages as measured by seedling survival and seed setting. There was a low correlation in cold tolerance between the germination and booting stages. Fifty one quantitative trait loci (QTLs) for cold tolerance were dispersed across all 12 chromosomes; 22 detected at the germination stage and 33 at the booting stage. Eight QTLs were identified by at least two of four measures. About 46% of the QTLs represented new loci. The only QTL shared between indica and japonica for the same measure was qLTSSvR6-2 for SSvR. This implied a complicated mechanism of old tolerance between the two subspecies. According to the relative genotypic effect (RGE) of each genotype for each QTL, we detected 18 positive genotypes and 21 negative genotypes in indica, and 19 positive genotypes and 24 negative genotypes in japonica. In general, the negative effects were much stronger than the positive effects in both subspecies. Markers for QTL with positive effects in one subspecies were shown to be effective for selection of cold tolerance in that subspecies, but not in the other subspecies. QTL with strong negative effects on cold tolerance should be avoided during MAS breeding so as to not cancel the effect of favorable QTL at other loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号