首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Viral infections remain a major threat to humans and animals and there is a crucial need for new antiviral agents especially with the development of resistant viruses. Several Limonium genus members (Plumbaginacea) have been widely used in traditional medicine for the treatment of infections. In this study, we investigated the antiviral activities of different fractions after successive extraction (hexane, dichloromethane, ethanol and methanol) of the halophyte Limonium densiflorum against H1N1 influenza and HSV-1 herpes viruses. In addition, TLC phytochemicals of the shoot extracts were analyzed. All extracts were tested for their cytotoxicity using a fluorometric resazurin assay. The antiviral activity of extracts was tested using four modes of action: virucidal test, pretreatment of cells with samples before infection, attachment assay and plaque reduction test. A good antiviral activity was found with ethanol and methanol extracts. They were most potent in HSV-1 inhibition than H1N1 influenza virus. The most potent inhibition was observed with ethanol extract, and it exhibited high levels of virucidal activity against HSV-1 (IC50 = 6 μg/mL). It inhibits the replication of the virus by 75% when added after penetration of the virus, and by 100% when added during the viral attachment. It protects MDCK cells against influenza virus by abolishing virus to entry into the host cell (IC50 = 55 μg/mL). After attachment of influenza virus, the ethanol extract displayed an appreciable inhibition of virus replication (IC50 = 193 μg/mL). Methanol extract showed a moderate antiviral capacity against both viruses. While dichloromethane has excellent antiherpes potential, results were inappropriate because it was toxic to Vero cells, hexane extract has no effect. TLC analysis of these extracts showed that flavonoids and saponins were the major classes of natural products found in the shoot extracts that may be responsible for these antiviral activities.  相似文献   

3.
Human Cathelicidin antimicrobial peptide LL-37 is known to have antiviral activity against many viruses. In the present study, we investigated the in-vitro effect of LL-37 on dengue virus type 2 (DENV-2) infection and replication in Vero E6 cells. To study the effect of pretreatment of virus or cells with LL-37, the virus was pretreated with different concentrations of LL-37 (2.5 μM–15 μM) or scrambled (Scr) LL-37(5 μM–15 μM) and used for infection or the cells were first treated with LL-37 and infected. To study the effect of LL-37 post infection (PI), the cells were infected first followed by addition of LL-37 to the culture medium 24 h after infection. In all conditions, after the incubation, the culture supernatant was assessed for viral RNA copy number by real time RT-PCR, infectious virus particles by focus forming unit assay (FFU) and non structural protein 1 (NS1) antigen levels by ELISA. Percentage of infection was assessed using immunoflourescence assay (IFA). The results revealed that pretreatment of virus with 10–15 μM LL-37 significantly reduced its infectivity as compared to virus control (P < 0.0001). Moreover, pretreatment of virus with 10–15 μM LL-37 significantly reduced the levels of viral genomic RNA and NS1 antigen (P < 0.0001). Treatment of virus with 10–15 μM LL-37 resulted in two to three log reduction of mean log10 FFU/ml as compared to virus control (P < 0.0001). Treatment of the virus with scrambled LL-37 had no effect on percentage of infection and viral load as compared to virus control cultures (P > 0.05). Pretreatment of cells before infection or addition of LL-37 to the culture 24 h PI had no effect on viral load. Molecular docking studies revealed possible binding of LL-37 to both the units of DENV envelope (E) protein dimer. Together, the in-vitro experiments and in-silico analyses suggest that LL-37 inhibits DENV-2 at the stage of entry into the cells by binding to the E protein. The results might have implications for prophylaxis against DENV infections and need further in-vivo studies.  相似文献   

4.
Seabuckthorn is a medicinal plant that is used to prevent cold. It was tested for its metabolic content followed by activity against cancer and virus. The metabolic distribution of different polarity solvent extractions from the leaves was analyzed by LC–MS/MS. Flavonol glycoside contents in EA and Bu extracts were higher than MeOH and DW was observed. MeOH and EA extracts recorded high activity against influenza A/PR virus with IC50 of 7.2 μg/mL and 10.3 μg/mL compared with known drug Oseltamivir of 60.3 μg/mL. A similar trend showed in influenza A/Victoria virus. In case of influenza B viruses such as B/Lee and B/Maryland, EA extract (2.87 μg/mL and 4.5 μg/mL of IC50) emerged strongest among other extracts and Oseltamivir (103.73 μg/mL and 71.6 μg/mL). Each extract showed potent anticancer activities. Interestingly, Bu extract showed stronger anticancer activity against human cancer cells such as NCL-H1299, HeLa, SKOV and Caski (8.2 μg/mL, 8.6 μg/mL, 18.2 μg/mL and 9.2 μg/mL of IC50) respectively. Correlation study reveals that aglycones and flavonol mono-glycosides highly correlated with anti-influenza activities but not correlated with anticancer activities. Reversely, di-glycosides and tri-glycosides have a high correlation with cytotoxic effect with both normal and cancer cells. Therefore, this study provides significant information concerning Seabuckthorn for further medicinal drug development.  相似文献   

5.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

6.
《Cytokine》2010,49(3):280-289
Toll-like receptor 9 (TLR9) activation stimulates protective immune responses against intracellular pathogens by phagocytes, including neutrophils. This study examined TLR9-mediated neutrophil activation in neonatal foals. Unmethylated CpGs, ligands for TLR9, were used to stimulate equine neutrophils, either purified or in contact with other peripheral blood leukocytes. Rhodococcus equi was used as another stimulus in parallel. TLR9 mRNA was constitutively expressed at a similar level in purified equine neutrophils across different ages from birth to adulthood, and expression was not affected by either CpG or R. equi. Purified foal neutrophils were directly sensitive to CpG stimulation, reflected by enhanced reactive oxygen species generation following fMLP stimulation, and by expressing significantly (P < 0.05) greater mRNA of IFN-γ, IL-8, IL-12p35, and significantly (P < 0.05) decreased TNF-α mRNA. In comparison, purified foal neutrophils stimulated by R. equi showed significantly (P < 0.05) increased mRNA production of IL-6, IL-8, IL-23p19, and TNF-α. Neutrophils co-cultured with other leukocytes expressed a distinct profile of cytokine mRNA than purified neutrophils in response to CpG stimulation, whereas the profile was very similar following R. equi stimulation irrespective of neutrophil purity. When co-cultured with other leukocytes, foal neutrophils were significantly (P < 0.05) activated at birth by B-class CpGs and produced IL-6, IL-8, IL-12p40, and IL-23p19 at similar magnitudes to those at 2 months of age. In foal neutrophils at birth, R. equi significantly (P < 0.05) induced all cytokines stimulated by CpGs (except IL-12p40), as well as TNF-α. Our results indicate that foal neutrophils were sensitive to CpG or R. equi activation as early as at birth, and that B-class CpGs enhanced foal neutrophil functions in vitro.  相似文献   

7.
Influenza A viruses (IAV) mutate rapidly and cause seasonal epidemics and occasional pandemics, which result in substantial number of patient visits to the doctors and even hospitalizations. We aimed here to identify inflammatory proteins, which levels correlated to clinical severity of the disease. For this we analysed 102 cytokines and growth factors in human nasopharyngeal aspirate (NPA) samples of 27 hospitalized and 27 outpatients diagnosed with influenza A(H1N1)pdm09 virus infection. We found that the relative levels of monocyte differentiation antigen CD14, lipocalin-2 (LCN2), C-C-motif chemokine 20 (CCL20), CD147, urokinase plasminogen activator surface receptor (uPAR), pro-epidermal growth factor (EGF), trefoil factor 3 (TFF3), and macrophage migration inhibitory factor (MIF) were significantly lower (p < 0.008), whereas levels of retinol-binding protein 4 (RBP4), C-X-C motif chemokine 5 (CXCL5), interleukin-8 (IL-8), complement factor D (CFD), adiponectin, and chitinase-3-like 1 (CHI3L1) were significantly higher (p < 0.008) in NPA samples of hospitalized than non-hospitalized patients. While changes in CD14, LCN2, CCL20, uPAR, EGF, MIF, CXCL5, IL-8, adiponectin and CHI3L1 levels have already been correlated with severity of IAV infection in mice and humans, our study is the first to describe association of CD147, RBP4, TFF3, and CFD with hospitalization of IAV-infected patients. Thus, we identified local innate immune profiles, which were associated with the clinical severity of influenza infections.  相似文献   

8.
Success of long duration space missions will depend upon robust immunity. Decreased immunity has been observed in astronauts during short duration missions, as evident by the reactivation of latent herpes viruses. Seventeen astronauts were studied for reactivation and shedding of latent herpes viruses before, during, and after 9–14 days of 8 spaceflights. Blood, urine, and saliva samples were collected 10 days before the flight (L-10), during the flight (saliva only), 2–3 h after landing (R + 0), 3 days after landing (R + 3), and 120 days after landing (R + 120). Values at R + 120 were used as baseline levels. No shedding of viruses occurred before flight, but 9 of the 17 (designated “virus shedders”) shed at least one or more viruses during and after flight. The remaining 8 astronauts did not shed any of the 3 target viruses (non-virus shedders). Virus-shedders showed elevations in 10 plasma cytokines (IL-1α, IL-6, IL-8, IFNγ, IL-4, IL-10, IL-12, IL-13, eotaxin, and IP-10) at R + 0 over baseline values. Only IL-4 and IP-10 were elevated in plasma of non-virus shedders. In virus shedders, plasma IL-4 (a Th2 cytokine) was elevated 21-fold at R + 0, whereas IFNγ (a Th1 cytokine) was elevated only 2-fold indicating a Th2 shift. The inflammatory cytokine IL-6 was elevated 33-fold at R + 0. In non-shedding astronauts at R + 0, only IL-4 and IP-10 levels were elevated over baseline values. Elevated cytokines began returning to normal by R + 3, and by R + 120 all except IL-4 had returned to baseline values. These data show an association between elevated plasma cytokines and increased viral reactivation in astronauts.  相似文献   

9.
Background and ObjectivesRecently influenza pandemic outbreaks were caused by emerging H5N1, H7N9 and H1N1 viruses. However, virucidal disinfectants are mainly unspecific and toxic. It is tactical to discover specific virucidal compounds.MethodsThe inhibitory potency was determined in H5N1 pseudovirus system; Interactions of compounds with hemagglutinin (HA) were detected with surface plasmon resonance (SPR) and further calculated with molecular docking. Virucidal effect was also estimated in influenza virus A/Puerto Rico/8/34(H1N1). Prevention efficacy was further estimated in mice model.ResultsOligothiophene compound 4sc was potently virucidal against H5N1 pseudovirus with selective index > 1169 (IC50 = 0.17 ± 0.01 μM). Pseudovirus assay revealed 4sc may interact with HA. However, HA inhibition test indicated 4sc did not interact with receptor pocket in HA. SPR detection revealed 4sc interacted directly with HA and its HA2 subunits. Molecular docking analysis revealed that 4sc interacted with the cavity of HA2 stem region and HA1-HA2 interface which consist of 7 residues: L22, K262, G472 and F1102 in HA2; M241, E251 and N271 in HA1. 4sc also potently and irreversibly neutralized PR8 (H1N1) virus, causing 105.06 ± 0.26 fold decrease of virus titer after exposure for 10 min. 4sc blocked PR8 transmission to MDCK cells. Amazingly, virucidal effect of 4sc was not significantly reduced even at 4 °C. Furthermore, 4sc blocked viral transmission to mice.ConclusionOligothiophene compound 4sc is a novel selective virucide of influenza virus, which blocks entry by interfering viral hemagglutinin. Due to promising safety profile and stable virucidal effect at 4 °C, 4sc may be useful in disinfecting H5N1 and H1N1 influenza virus.  相似文献   

10.
Sheep pox virus initially adapted to replicate in primary lamb kidney cells was adapted to Vero cells by serial passages in monolayer cultures. After nine passages the virus was able to correctly replicate in Vero cells, virus titer achieved was 105.875 TCID50 (median tissue culture infective dose) ml−1.To optimize the production process, the effects of MOI (multiplicity of infection), TOI (time of infection) and the culture medium were investigated. Cell infection at a MOI of 0.005 concurrently with cell seeding showed the best results in terms of specific virus productivity. The effect of MEM enrichment with several components was investigated using the experimental design approach. 67 experiments were performed in 6-well plates to select the best combination. The highest titer was achieved when MEM was supplemented with 5 mM glucose, 5 mM fructose and 25 mM sucrose. Spinner culture confirms these data; virus titer was 107.375 TCID50 ml−1.In addition Vero cells were cultivated in a 7-l bioreactor in batch mode on 3 g l−1 Cytodex1, and infected at cell seeding at a MOI of 0.005. Maximal virus titer was 107.275 TCID50 ml−1. This corresponds to 44-fold factor enhancement compared to spinner cultures conducted in MEM + 2% FCS.  相似文献   

11.
The innate immune response represents a primary line of defense against invading viral pathogens. Since epithelial cells are the primary site of gammaherpesvirus replication during infection in vivo and there are no information on activity of IFN-III signaling against gammaherpesviruses in this cell type, in present study, we evaluated the expression profile and virus-host interactions in mouse mammary epithelial cell (NMuMG) infected with three strains of murine gammaherpesvirus, MHV-68, MHV-72 and MHV-4556. Studying three strains of murine gammaherpesvirus, which differ in nucleotide sequence of some structural and non-structural genes, allowed us to compare the strain-dependent interactions with host organism. Our results clearly demonstrate that: (i) MHV-68, MHV-72 and MHV-4556 differentially interact with intracellular signaling and dysregulate IFN signal transduction; (ii) MHV-68, MHV-72 and MHV-4556 degrade type I IFN receptor in very early stages of infection (2–4 hpi), but not type III IFN receptor; (iii) type III IFN signaling might play a key role in antiviral defense of epithelial cells in early stages of murine gammaherpesvirus replication; (iv) NMuMG cells are an appropriate model for study of not only type I IFN signaling, but also type III IFN signaling pathway. These findings are important for better understanding of individual virus-host interactions in lytic as well as in persistent gammaherpesvirus replication and help us to elucidate IFN-III function in early events of virus infection.  相似文献   

12.
The study established the virulence potential of multidrug-resistant Escherichia coli (MDREC) isolates from nosocomial infections in hospitalised dogs. The isolates were resistant to fluoroquinolones, belonged to two distinct clonal groups (CG1 and CG2) and contained a plasmid-mediated AmpC (CMY-7) β-lactamase. CG1 isolates (n = 14) possessed two of 36 assayed extraintestinal virulence genes (iutA and traT) and belonged to phylogenetic group A, whereas CG2 isolates (n = 19) contained four such genes (iutA, ibeA, fimH and kpsMT K5) and belonged to group D. In a mouse gastrointestinal tract colonisation model, colonisation by index CG1 strain C1 was transient, in contrast to the index CG2 strain C2b, which persisted up to 40 days post-inoculation. In a mouse subcutaneous challenge model, both strains were less virulent than archetypal group B2 extraintestinal pathogenic E. coli (ExPEC) strain CFT073; strain C1 caused no systemic signs and strain C2b was lethal to only one of six mice. In a mouse urinary tract infection model, strain C2b colonised the mouse bladder over 2 logs higher compared to strain C1. Whilst both groups of canine MDREC appear less virulent than a reference human ExPEC strain, CG2 strains have greater capacity for colonisation and virulence.  相似文献   

13.
Avian influenza (AI) is a respiratory disease complex syndrome recently recorded in vaccinated flocks causing high economic losses. This study aimed to prepare inactivated vaccine from recently isolated field strains [highly pathogenic avian influenza (HPAI) (H5N8) and low pathogenic avian influenza (LPAI) (H9N2)] and compare the efficiency of the two experimental avian influenza vaccines and some commercial avian influenza H5 and H9N2 vaccines in laying hens. The obtained results indicated that the identified experimental vaccines (H5N8 and H9N2) were protected the flocks from AI as compared to commercial H5N1, H5N3, and H9N2 vaccines, which showed a protection level of 80, 70, and 90%, respectively, indicating a high efficacy for the developed vaccines. In addition, it significantly improved the virus shedding, especially when used in booster dose. The experimental vaccines were given high antibody titer higher than commercial vaccine which was reached to 9.3 log2, 9.7log2 for experimental H5N8 vaccine which was significantly higher than and groups 3 and 4 especially at 2nd WPV, while at the 3rd WPV, the significant difference was with group 4 only. The HI titer was 9.3 log2 at 2nd WPV for the experimental H9N2 vaccine that was significantly higher than group 9. In conclusion, the booster dose of the experimental vaccines could elicit strong immunity than single-dose and commercial vaccines.  相似文献   

14.
Herpes simplex viruses (HSVs) display affinity for cell-surface heparan sulfate proteoglycans with biological relevance in virus entry. Here, we exploit an approach to inhibiting HSV infection by using a sulfated fucoidan, and a guluronic acid-rich alginate derived from Sargassum tenerrimum, mimicking the active domain of the entry receptor. These macromolecules have apparent molecular masses of 30 ± 5 and 26 ± 5 kDa, respectively. They and their chemically sulfated derivatives showed activity against herpes simplex virus type 1 (HSV-1). Their inhibitory concentration 50% (IC50) values were in the range 0.5–15 μg/ml and they lacked cytotoxicity at concentrations up to 1000 μg/ml. The anti-HSV activity increased with increasing sulfate ester content. Our results suggest the feasibility of inhibiting HSV infection by blocking viral entry with polysaccharide having specific structure.  相似文献   

15.
We investigated the effect of lipopolysaccharide (LPS) chemotypes differing in their carbohydrate chain length on phagocytosis of serum-opsonized zymosan (OZ) particles and related functions of human polymorphonuclear leukocyte (PMNL, neutrophils). LPS from deep core mutant (Re), complete core (Ra) and smooth (S) phenotypes of Salmonella typhimurium was studied. Priming of neutrophils with various LPSs caused prominent enhancement of OZ phagocytosis, superoxide production and leukotriene (LT) synthesis in neutrophils, with LPS effects increasing as Re < S < Ra. The LPS forms were less potent to activate OZ uptake in the presence of MK-886, 5-lipoxygenase activating protein inhibitor, suggesting the regulatory function of 5-lipoxygenase (5-LO)-derived LTs. Direct measurement of nitrite release from OZ-stimulated neutrophils revealed that the effects of LPS on NO synthesis increased in the range of Ra < S < Re. Nitric oxide synthase (NOS) inhibitor l-NAME increased phagocytosis, LT and superoxide formation by neutrophils, and abolished the difference in the action of the LPSs forms. Further mechanistic studies revealed that NO modulates cellular 5-LO activity in a guanylyl cyclase and protein kinase G dependent manner, as well as interplay between NO and superoxide, and peroxynitrite generation contribute to distinct effects of LPS chemotypes on phagocytosis and LT synthesis in human neutrophils. Our investigation of the three LPS species demonstrates that the LPS polysaccharide core is mostly essential for the PMNL activation and is able to suppress lipid A-induced increase in NOS activity in phagocyting cells by triggering specific signaling cascades.  相似文献   

16.
During inflammation, neutrophils infiltrate into the involved site and undergo apoptosis. Early apoptotic neutrophils are then cleared by phagocytes, leading to resolution of the inflammation, whereas if late apoptotic neutrophils are accumulated for some reason, they provoke proinflammatory responses such as TNF-α production. To determine how endogenously produced nitric oxide (NO) regulates neutrophil apoptosis and the resolution of inflammation, we compared peritoneal inflammation induced by Staphylococcus aureus bioparticles in wild type mice with that in inducible NO synthase (iNOS)-deficient ones. In this model, NO production was largely dependent on iNOS, the NO level peaking at 24 h. There were increases in the numbers of neutrophils and late apoptotic ones at 24 h in iNOS-deficient mice as compared with in wild type ones, and consequently TNF-α production at 36 h in iNOS-deficient mice. On the other hand, the administration of a NO donor to iNOS-deficient mice at 12 h decreased the numbers of neutrophils and late apoptotic ones at 24 h, and thereafter TNF-α production at 36 h. In addition, coculturing of macrophages with late apoptotic neutrophils caused TNF-α production and a NO donor inhibited the transmigration of neutrophils in a dose-dependent manner. Collectively, these results suggest a novel mechanism that endogenously produced NO suppresses neutrophil accumulation at a late stage of inflammation, thereby preventing the appearance of late apoptotic neutrophils and subsequent proinflammatory responses.  相似文献   

17.
BackgroundTo assess the existence of association between neutrophil to lymphocyte ratio (NLR) and the risk of sarcopenia in COVID-19 patients.MethodsA retrospective cross-sectional study was conducted in a university hospital with patients with an active COVID-19 infection admitted to the nursing ward or intensive care unit (ICU) between September to December 2020. Sarcopenia risk was assessed using the Strength, Assistance for walking, Rise from a chair, Climb stairs and Falls (SARC-F). Biochemical analyses were assessed by circulating of C-reactive protein, D-dimer, neutrophils, lymphocytes count and NLR. Sixty-eight patients were evaluated and divided into tertiles of NLR values and the association between NLR and sarcopenia risk were tested using the linear regression analyses and p < 0.05 were considered as significant.ResultsSixty-eight patients were evaluated and divided in NLR tertiles being the 1st (men = 52.2%; 71.1 ± 9.0 y; NLR: 1.1–3.85), 2nd (women = 78.3%; 73.2 ± 9.1 y; NLR: 3.9–6.0) and 3rd (men = 72.7%; 71.7 ± 10.4 y; NLR: 6.5–20.0). There was a difference between the tertiles in relation to the first to the biochemical parameters of total neutrophils count (p = 0.001), C-reactive protein (p = 0.012), and D-dimer (p = 0.012). However, no difference was found in linear regression analysis between tertiles of NLR and SARC-F, if in total sample (p = 0.054) or divided by sex, if men (p = 0.369) or women (p = 0.064).ConclusionIn elderly patients hospitalized with COVID-19, we do not find an association between the risk of sarcopenia and NLR.  相似文献   

18.
19.
《Small Ruminant Research》2007,72(1-3):165-169
Our objective was to determine whether breed differences existed in response to exposure and treatment of virulent foot rot. Dorset (DS), 1/2 Dorper (DX), 3/4 or greater Dorper (DO), Gulf Coast Native (GC), Katahdin (KA), and St. Croix (SC) mature sheep and lambs were exposed to virulent foot rot in spring 2003. Treatment for foot rot was initiated in 132 lambs and 262 mature sheep in late July. There were eight pasture groups treated, two of which were minimally exposed to foot rot. Treatment included hoof paring, foot bathing with 10% zinc sulfate with surfactant, allowing the zinc sulfate to dry on the foot and moving to a small paddock that had not been exposed to small ruminants for more than 14 d. Foot bathing was repeated every 7 d for a maximum of five treatments. Animals that had not responded (odor or any indication of persistent infection) by then were culled from the flock. As an indication of severity of foot rot for each animal, the number of areas on the foot (interdigital and two digits for each foot), a foot score (0 = no infection found; 1 = infection of digits only; 2 = infection of interdigital area and could include digits), and presence of characteristic odor was recorded. Least squares means for number of areas infected were greater for mature than growing sheep (2.07 ± 0.16 versus 0.88 ± 0.31; P < 0.001), for highly than minimally exposed groups (2.89 ± 0.17 versus 0.05 ± 0.29; P < 0.001), and DX compared with other breed types (P < 0.03). Percentage of sheep with odor was similar between age groups, was greater in the highly exposed groups (11.4 ± 1.9 versus 2.1 ± 3.4; P < 0.02), and greater in DO compared with DS, KA, and SC breeds (P < 0.001). Foot score was similar among breeds and greater in the highly exposed groups (age by group, P < 0.05). Percentage of sheep culled for failure to respond to foot bath treatment was greater for the highly than minimally exposed group (22.9 ± 2.3 versus 0.0 ± 3.9; P < 0.001) and greater for mature sheep compared with lambs (P < 0.001) and similar among breeds. In November, four ewes in a large group and two lambs in a small group were determined to have foot rot and were immediately culled. The two groups containing these ewes were re-treated for 2 weeks and were determined to be free of foot rot (no further signs of lameness). Response to foot rot eradication appeared to be similar among breeds examined.  相似文献   

20.
Unlike the group-2 neuraminidase, the group-1 neuraminidase of influenza virus possesses a flexible loop (the 150-loop) and a cavity (the 150-cavity) adjacent to the active site, and renders a conformational change from the ‘open’ form to the ‘closed’ form on binding with substrate (sialo-glycoprotein) or inhibitor (e.g., zanamivir). Zanamivir derivative 8a having an extended (piperazinocarbonyl)propyl substituent at the internal N-position of the guanidino group is designed as a possible inhibitor on the basis of computer docking to the open form of N1 subtype neuraminidase. Indeed, compound 8a exhibits strong neuraminidase inhibition and good anti-influenza activity against H1N1 virus with IC50 = 2.15 μM and EC50 = 0.77 μM, respectively. This study may provide a clue to future design of better group-1 neuraminidase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号