首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lens in the vertebrate eye has been shown to be critical for proper differentiation of the surrounding ocular tissues including the cornea, iris and ciliary body. In mice, previous investigators have assayed the consequences of molecular ablation of the lens. However, in these studies, lens ablation was initiated (and completed) after the cornea, retina, iris and ciliary body had initiated their differentiation programs thereby precluding analysis of the early role of the lens in fate determination of these tissues. In the present study, we have ablated the lens precursor cells of the surface ectoderm by generation of transgenic mice that express an attenuated version of diphtheria toxin (Tox176) linked to a modified Pax6 promoter that is active in the lens ectodermal precursors. In these mice, lens precursor cells fail to express Sox2, Prox1 and αA-crystallin and die before the formation of a lens placode. The Tox176 mice also showed profound alterations in the corneal differentiation program. The corneal epithelium displayed histological features of the skin, and expressed markers of skin differentiation such as Keratin 1 and 10 instead of Keratin 12, a marker of corneal epithelial differentiation. In the Tox176 mice, in the absence of the lens, extensive folding of the retina was seen. However, differentiation of the major cell types in the retina including the ganglion, amacrine, bipolar and horizontal cells was not affected. Unexpectedly, ectopic placement of the retinal pigmented epithelium was seen between the folds of the retina. Initial specification of the presumptive ciliary body and iris at the anterior margins of the retina was not altered in the Tox176 mice but their subsequent differentiation was blocked. Lacrimal and Harderian glands, which are derived from the Pax6-expressing surface ectodermal precursors, also failed to differentiate. These results suggest that, in mice, specification of the retina, ciliary body and iris occurs at the very outset of eye development and independent of the lens. In addition, our results also suggest that the lens cells of the surface ectoderm may be critical for the proper differentiation of the corneal epithelium.  相似文献   

2.
3.
We aimed to examine the distribution of SEPT4, SEPT5, and SEPT8 in the human eye. For each septin, five to six normal human eyes were examined by immunohistochemical staining of paraffin sections using polyclonal antibodies against SEPT4, SEPT5, and SEPT8 and an avidin biotin complex immunodetection system. SEPT4 immunoreactivity (IR) was detected primarily in the epithelium of cornea, lens, and nonpigmented ciliary epithelium; in the endothelium of cornea and vessels of iris and retina; and in the retinal nerve fiber layer, the outer plexiform layer, the outer segments of the photoreceptor cells, the inner limiting membrane of the optic nerve head, and optic nerve axons. SEPT5-IR was present in corneal endothelial cells, iris tissue, nonpigmented ciliary epithelium, and epithelial cells of the lens. SEPT8-IR almost paralleled that of SEPT4, except for a lower SEPT8-IR of the outer photoreceptor segments and a positive staining of the meningothelial cell nests in the subarachnoidal space of the bulbar segment of the orbital optic nerve. In conclusion, SEPT4, SEPT5, and SEPT8 are expressed in various ocular tissues, each revealing a distinct expression pattern. Both physiological and potential pathophysiological role of septins in the human eye deserve further investigation.  相似文献   

4.
Loss of caveolin-1 in bronchiolization in lung fibrosis.   总被引:1,自引:0,他引:1  
Bronchiolization is a key process in fibrosing lung in which the proliferative status of bronchiolar epithelium changes, leading to abnormal epithelial morphology. Within the context that caveolin-1 acts to suppress epithelial proliferation, we postulated that stimulating epithelial injury would lead to caveolin-1 downregulation and encourage proliferation. The present study evaluates the expression of caveolin-1, especially in bronchiolization, in C57BL/6J mice with bleomycin-induced lung fibrosis and in various types of re-epithelialization in human interstitial pneumonias (IPs). Immunohistochemically, levels of caveolin-1 decreased in the bronchiolar epithelium of mice treated with bleomycin. Levels of caveolin-1 mRNA in the whole lung were decreased at 7 and 14 days. Caveolin-1 mRNA was also decreased in laser-capture microdissection- retrieved bronchiolar epithelial cells at 7 days. Among patients with 12 IPs, including four usual IPs (UIPs) and eight nonspecific IPs (NSIPs), whole lung caveolin-1 was significantly decreased compared with 12 controls at both mRNA and protein levels. By scoring immunointensity, caveolin-1 was significantly reduced in bronchiolization and squamous metaplasia as well as in bronchiolar epithelium in 23 IPs (12 UIPs and 11 NSIPs) compared with bronchiolar epithelium from seven controls. These data suggested that loss of caveolin-1 is associated with abnormal re-epithelialization in lung fibrosis.  相似文献   

5.
Aqueous humor is secreted by the bilayered ciliary epithelium. Solutes and water enter the pigmented ciliary epithelial (PE) cell layer, cross gap junctions into the nonpigmented ciliary epithelial (NPE) cell layer, and are released into the aqueous humor. Electrical measurements suggest that heptanol reduces transepithelial ion movement by interrupting PE-NPE communication and that gap junctions may be a regulatory site of aqueous humor formation. Several lines of evidence also suggest that net ciliary epithelial transport is strongly region dependent. Divided rabbit iris-ciliary bodies were incubated in chambers under control and experimental conditions, quick-frozen, cryosectioned, and freeze-dried. Elemental intracellular contents of NPE and PE cells were determined by electron probe X-ray microanalysis. With or without heptanol, ouabain produced concentration- and time-dependent changes more markedly in anterior than in posterior epithelium. Without heptanol, there were considerable cell-to-cell variations in Na gain and K loss. However, contiguous NPE and PE cells displayed similar changes, even when nearby cell pairs were little changed by ouabain in aqueous, stromal, or both reservoirs. In contrast, with heptanol present, ouabain added to aqueous or both reservoirs produced much larger changes in NPE than in PE cells. The results indicate that 1) heptanol indeed interrupts PE-NPE junctions, providing an opportunity for electron microprobe analysis of the sidedness of modification of ciliary epithelial secretion; 2) Na and K undergo faster turnover in anterior than in posterior epithelium; and 3) PE-NPE gap junctions differ from PE-PE and NPE-NPE junctions in permitting ionic equilibration between adjoining ouabain-stressed cells. pigmented ciliary epithelial cells; nonpigmented ciliary epithelial cells; gap junctions; aqueous humor; Na+/K+ exchange pump; rabbit iris-ciliary body  相似文献   

6.
7.
The permeability of the cornea epithelial layer has an important role in optimal function of the cornea. To assess this property quantitatively, methods must be based on the passive electrical properties of living tissues, as they can take advantage of the fundamental role that ionic permeability plays in such properties. For such techniques, measurement of the translayer electrical resistance (TER) has been consistently used to examine the ion transport mechanisms in the corneal epithelial cells; however, this technique has been only possible in vitro. To enhance the applications of this method, in this work we present a novel sensor to perform non-invasive in vivo TER measurements. Herein, the epithelial permeability was assessed using non-invasive tetrapolar impedance measurements that were performed with four electrodes placed on the corneal surface. The geometry of these electrodes was previously optimized to maximize the sensitivity of the corneal epithelium. To evaluate the feasibility of this sensor, the permeability of a rabbit corneal epithelium was monitored by applying a solution of benzalkonium chloride (0.05% BAC). The results validate the capability of the sensor to evaluate the cornea epithelial permeability in vivo.  相似文献   

8.
9.
Caveolin-1 is a scaffolding protein component of caveolae, membrane invaginations involved in endocytosis, signal transduction, trans- and intracellular trafficking, and protein sorting. In adult lung, caveolae and caveolin-1 are present in alveolar endothelium and Type I epithelial cells but rarely in Type II cells. We have analyzed patterns of caveolin-1 expression during mouse lung development. Two caveolin-1 mRNAs, full-length and a 5' variant that will translate mainly into caveolin-1alpha and -beta isoforms, are detected by RT-PCR at embryonic day 12 (E12) and afterwards in the developing and adult lung. Immunostaining analysis, starting at E10, shows caveolin-1alpha localized in primitive blood vessels of the forming lung, in an overlapping pattern to the endothelial marker PECAM-1, and later in all blood vessels. Caveolin-1alpha is not detected in fetal or neonatal lung epithelium but is detected in adult epithelial Type I cells. Caveolin-1 was previously shown to be expressed in alveolar Type I cells. These data suggest that expression of caveolin-1 isoforms is differentially regulated in endothelial and epithelial cells during lung development. Caveolin-1alpha is an early marker for lung vasculogenesis, primarily expressed in developing blood vessels. When the lung is fully differentiated postnatally, caveolin-1alpha is also expressed in alveolar Type I cells.  相似文献   

10.
11.
Immunohistochemical and in vitro studies indicate that caveolin-1, which occurs abundantly in alveolar epithelial type I cells and microvascular endothelial cells of the lung, is selectively downregulated in the alveolar epithelium following exposure to bleomycin. Bleomycin is also known to enhance the expression levels of metalloproteinases and of the metalloproteinase inducer CD147/EMMPRIN in lung cells. Experimental in vitro data has showed that MMP-inducing activity of CD147 is under the control of caveolin-1. We studied the effects of bleomycin on the expression of caveolin-1, CD147 and metalloproteinases using an alveolar epithelial rat cell line R3/1 with properties of both alveolar type I and type II cells and explanted rat lung slices. In parallel, retrospective samples of bleomycin-induced fibrosis in rats and mice as well as samples of wild type and caveolin-1 knockout animals were included for immunohistochemical comparison with in vitro data. Here we report that treatment with bleomycin downregulates caveolin-1 and increases CD147 and MMP-2 and -9 expression/activity in R3/1 cells using RT-PCR, Western blot analysis, MMP-2 activity assay and immunocytochemistry. Immunofluorescence double labeling revealed that caveolin-1 and CD147 were not colocalized in vitro. The in vitro findings were confirmed through immunohistochemical studies of the proteins in paraffin embedded precision-cut rat lung slices and in fibrotic rat lung tissues. The caveolin-1-negative hyperplastic ATII cells exhibited enhanced immunoreactivity for CD147 and MMP-2. Caveolin-1-negative ATI cells of fibrotic samples were mostly CD147 negative. There were no differences in the pulmonary expression of CD147 between the normal and caveolin-1 deficient animals. The results demonstrate that bleomycin-induced lung injury is associated with an increase in CD147 expression and MMP activity, particularly in alveolar epithelial cells. In addition, our data exclude any functional interaction between CD147 and alveolar epithelial caveolin-1.  相似文献   

12.
Cranial neural crest cells migrate into the periocular region and later contribute to various ocular tissues including the cornea, ciliary body and iris. After reaching the eye, they initially pause before migrating over the lens to form the cornea. Interestingly, removal of the lens leads to premature invasion and abnormal differentiation of the cornea. In exploring the molecular mechanisms underlying this effect, we find that semaphorin3A (Sema3A) is expressed in the lens placode and epithelium continuously throughout eye development. Interestingly, neuropilin-1 (Npn-1) is expressed by periocular neural crest but down-regulated, in a manner independent of the lens, by the subpopulation that migrates into the eye and gives rise to the cornea endothelium and stroma. In contrast, Npn-1 expressing neural crest cells remain in the periocular region and contribute to the anterior uvea and ocular blood vessels. Introduction of a peptide that inhibits Sema3A/Npn-1 signaling results in premature entry of neural crest cells over the lens that phenocopies lens ablation. Furthermore, Sema3A inhibits periocular neural crest migration in vitro. Taken together, our data reveal a novel and essential role of Sema3A/Npn-1 signaling in coordinating periocular neural crest migration that is vital for proper ocular development.  相似文献   

13.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

14.
Caveolin-1 is one of the important regulators of vascular permeability in inflamed lungs. Podocalyxin is a CD34 protein expressed on vascular endothelium and has a role in podocyte development in the kidney. Few data are available on the expression of caveolin-1 and podocalyxin in lungs challenged with Toll-like receptor 2 (TLR2) agonists such as mycoplasma-derived macrophage activating lipopeptide or with immune modulators such as Fms-like tyrosine kinase receptor-3 ligand (Flt3L), which expands dendritic cell populations in the lung. Because of the significance of pathogen-derived molecules that act through TLR2 and of the role of immune modulators in lung physiology, we examine the immunohistochemical expression of caveolin-1 and podocalyxin in lungs from rats challenged with a 2-kDa macrophage-activating lipopeptide (MALP-2) and Flt3L. Normal rat lungs expressed caveolin-1 in alveolar septa, vascular endothelium and airway epithelium, especially along the lateral borders of epithelial cells but not in alveolar macrophages. MALP-2 and Flt3L decreased and increased, respectively, the expression of caveolin-1. Caveolin-1 expression seemed to increase in microvessels in bronchiole-associated lymphoid tissue (BALT) in Flt3L-challenged lungs but not in normal or MALP-2-treated lungs. Podocalyxin was absent in the epithelium and alveolar macrophages but was present in the vasculature of control, Flt3L- and MALP-2-treated rats. Compared with control and MALP-2-treated rats, Flt3L-treated lungs showed greater expression of podocalyxin in BALT vasculature and at the interface of monocytes and the endothelium. These immunohistochemical data describing the altered expression of caveolin-1 and podocalyxin in lungs treated with MALP-2 or Flt3L encourage further mechanistic studies on the role of podocalyxin and caveolin-1 in lung inflammation.  相似文献   

15.
The precise localization of aquaporin (AQP)1 and AQP4 was studied in iris and ciliary epithelial cells, in both mature and developing rats, to elucidate the molecular mechanisms underlying aqueous humor balance. Anterior segments of eyes dissected from embryonic day (E)13, E15, E18, and E20, postnatal day (P)0, P7, and P14, and postnatal week 8 rats were subjected to immunofluorescence analysis with AQP isoform-specific antibodies. In adult rat eye, AQP1 was localized to the apical and basolateral plasma membranes of iris epithelial cell layers and of anterior ciliary non-pigmented epithelial (NPE) cells. Conversely, AQP4 was localized to the basolateral plasma membrane of NPE cells in ciliary epithelium and the posterior iris. Developmentally, AQP1 was detected as early as E15 in immature iris and ciliary epithelial cells, and expression persisted throughout development up to adulthood. In contrast, AQP4 was first observed at P7 in the developing pars plicata, and the AQP4-positive area gradually spread to cover the entire pars plicata as development proceeded. These findings indicate that both AQP1 and AQP4 contribute to aqueous humor secretion in the rat eye, thereby maintaining proper intraocular pressure. Moreover, AQP appears to play a major role in aqueous humor secretion in early eye development. This study thus provides a basis for understanding the molecular mechanisms of aqueous humor secretion in pathological and physiological conditions.  相似文献   

16.
Ciliated epithelial cells from rabbit trachea were employed to examine the role of Ca2+ in the regulation of ciliary motility. Tracheal explants and outgrowths were maintained in culture, and ciliary frequency was determined using a photomultiplier interfaced with a spectrum analyzer capable of Fast Fourier transform analysis. Relative cellular Ca2+ levels were determined by measuring 45Ca2+ uptake and efflux. Elevated cellular Ca2+, from exposure to 10(-5) M calcium ionophore A23187, led to an increase in ciliary frequency followed by inhibition of motility after prolonged treatment. A decrease in ciliary frequency was observed upon lowering intracellular Ca2+ by exposing the epithelium to 1 mM EGTA. Exposure of ciliated cells to 10(-4) M trifluoperazine resulted in inhibition of ciliary motility, a result suggesting a possible role for calmodulin- or phospholipid-sensitive Ca2+-dependent protein kinases in ciliary function. These results support the hypothesis that intracellular Ca2+ is actively involved in modulating the frequency of ciliary beat.  相似文献   

17.
Keratinocyte growth factor (KGF) and its receptor are involved in various types of epithelial repair processes. To gain insight into the molecular mechanisms of KGF action in the healing skin wound, we searched for genes which are regulated by this factor in cultured keratinocytes. Using the PCR-select technology we constructed a subtractive cDNA library. One of the KGF-regulated genes that we identified was shown to encode caveolin-1, a major component of caveolar membranes. Caveolin-1 is involved in a wide variety of cellular processes, particularly in the regulation of various signal transduction pathways. Caveolin-1 mRNA levels increased in cultured keratinocytes after KGF treatment. By in situ hybridization and immunohistochemistry we found a strong expression of caveolin-1 in the KGF-responsive basal keratinocytes of the epidermis and the hyperproliferative epithelium of the wound as well as in endothelial cells and in other cells of the granulation tissue. In 13-day wounds expression of caveolin-1 mRNA was restricted to the regenerated dermis. In addition to caveolin-1, the mRNA expression of caveolin-2, a second member of the caveolin family, was also induced in keratinocytes after stimulation with KGF but also with other growth factors and cytokines. In contrast to caveolin-1, caveolin-2 protein was expressed in all layers of the normal epidermis and in the suprabasal layers of the hyperproliferative wound epithelium. These results demonstrate a differential expression of caveolin-1 and -2 in proliferating versus differentiating keratinocytes.  相似文献   

18.
《Autophagy》2013,9(4):436-437
Autophagy, a cellular program for organelle and protein turnover, represents primarily a cell survival mechanism. However, the role of autophagy in the regulation of apoptosis remains unclear. We have observed increases in morphological and biochemical indicators of autophagy in human lung from patients with chronic obstructive pulmonary disease (COPD). Furthermore, we observed induction of autophagic markers in mouse lung subjected to chronic cigarette smoke exposure. Recently, we investigated the role of the autophagic protein microtubule-associated protein 1 light chain 3B (LC3B) as a regulator of lung cell death. We found that LC3B knockout (LC3B-/-) mice subjected to chronic cigarette smoke exposure have reduced lung apoptosis, and resist airspace enlargement, relative to wild-type mice. We therefore examined the mechanisms by which LC3B can regulate apoptosis in epithelial cells. We found that LC3B forms a complex with the death receptor Fas in lipid rafts of epithelial cells, which requires the caveolae-resident protein caveolin-1. Genetic interference of caveolin-1 in epithelial cells augments cigarette smoke-induced apoptosis. Caveolin-1 knockout mice exhibit increased autophagic markers, apoptosis, and airspace enlargement in the lung in response to chronic cigarette smoke. These studies demonstrate that LC3B can promote tissue injury during chronic cigarette smoke exposure, and suggest a mechanism by which LC3B, through interactions with caveolin-1 and Fas, can regulate apoptosis. Targeting the autophagic pathway may represent an experimental therapeutic strategy when designing new approaches to COPD treatment.  相似文献   

19.
Many microbial pathogens subvert cell surface heparan sulfate proteoglycans (HSPGs) to infect host cells in vitro. The significance of HSPG-pathogen interactions in vivo, however, remains to be determined. In this study, we examined the role of syndecan-1, a major cell surface HSPG of epithelial cells, in Staphylococcus aureus corneal infection. We found that syndecan-1 null (Sdc1(-/-)) mice significantly resist S. aureus corneal infection compared with wild type (WT) mice that express abundant syndecan-1 in their corneal epithelium. However, syndecan-1 did not bind to S. aureus, and syndecan-1 was not required for the colonization of cultured corneal epithelial cells by S. aureus, suggesting that syndecan-1 does not mediate S. aureus attachment to corneal tissues in vivo. Instead, S. aureus induced the shedding of syndecan-1 ectodomains from the surface of corneal epithelial cells. Topical administration of purified syndecan-1 ectodomains or heparan sulfate (HS) significantly increased, whereas inhibition of syndecan-1 shedding significantly decreased the bacterial burden in corneal tissues. Furthermore, depletion of neutrophils in the resistant Sdc1(-/-) mice increased the corneal bacterial burden to that of the susceptible WT mice, suggesting that syndecan-1 moderates neutrophils to promote infection. We found that syndecan-1 does not affect the infiltration of neutrophils into the infected cornea but that purified syndecan-1 ectodomain and HS significantly inhibit neutrophil-mediated killing of S. aureus. These data suggest a previously unknown bacterial subversion mechanism where S. aureus exploits the capacity of syndecan-1 ectodomains to inhibit neutrophil-mediated bacterial killing mechanisms in an HS-dependent manner to promote its pathogenesis in the cornea.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号