首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transcription of the chloroplast DNA: a review   总被引:8,自引:0,他引:8  
J F Briat  A M Lescure  R Mache 《Biochimie》1986,68(7-8):981-990
  相似文献   

3.
4.
细菌基因组中存在大量的转录调控家族,这些转录调控家族在细菌的生长、代谢、外界信号感知与传递等方面发挥着至关重要的作用.DeoR家族是一类广泛分布于原核生物中的转录调控因子,主要参与调控细胞中多个生理过程,包括核苷酸类代谢、糖类代谢、致病菌的毒力以及链霉菌的次级代谢等.DeoR蛋白C末端的配体结合结构域,通常能够以相关代...  相似文献   

5.
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.  相似文献   

6.
7.
8.
Mechanisms for diversity in gene expression patterns   总被引:8,自引:0,他引:8  
K Struhl 《Neuron》1991,7(2):177-181
  相似文献   

9.
10.
This study examined microRNA network properties traced through taxonomic hierarchy considering both the acquisition of potential network targets and regulators. Primary literature review and database analyses were conducted to establish modules of conserved microRNAs across metazoan taxonomy. A hierarchical schema for the conservation of microRNAs and their putative targets to Drosophila melanogaster was engineered through comprehensive meta-analysis, and conservation history of 90.39% of the total Drosophila dataset could be resolved through this hierarchical sampling regime; tracing from taxonomic order down to empire. The findings presented in this study represent a documentation of Drosophila microRNA regulatory network behavior thorough taxonomic hierarchy. MicroRNA regulatory network properties were found to transect taxonomic hierarchy. Newly acquired microRNAs from novel families reinforce the pre-existing regulatory network, while expanding the target list to include a small number of novel genes. Lineage specific microRNAs were found to exhibit far fewer conserved targets than do the more broadly conserved microRNAs; even when considering only more recently emerged targets. There was a dramatic expansion in network complexity with the expansion of the microRNA repertoire, and this corresponds to the expansion in biological complexity.  相似文献   

11.
Subcellular fractions from human liver were assayed for aspartyl kinase (AK) activity measured by standard spectrophotometric methods. Along the purification procedure three different fractions displayed the expected enzyme activity. Interestingly, two of these fractions were specifically recognized by antibodies raised against E. coli aspartate kinases, suggesting a high degree of evolutionary conservation for these ubiquitous enzymes for prokaryotes. Since their known function in bacteria is not strictly required in eukaryotes, these observation imply that the presence and activity of aspartyl kinase(s) in mammals might represent putative regulatory roles for these enzymes in eukaryotic cell metabolism.  相似文献   

12.
Plasmids pPBP and pRS-XP containing the cloned genes for the Pseudomonas aeruginosa phosphate-starvation-inducible periplasmic phosphate-binding protein and outer membrane porin P (oprP), respectively, were introduced into various Escherichia coli Pho-regulon regulatory mutants. Using Western immunoblots and specific antisera, the production of both gene products was observed to be under the control of regulatory elements of the E. coli Pho regulon. Sequencing of the region upstream of the translational start site of the oprP gene revealed a 'Pho box' with strong homology to the E. coli consensus 'Pho box', the putative binding site of the PhoB activator. Since P. aeruginosa and E. coli belong to different families and have quite different GC contents, these data suggest strong evolutionary conservation of regulatory elements of the Pho regulon.  相似文献   

13.
Many Escherichia coli strains are covered in a layer of surface-associated polysaccharide called the capsule. Capsular polysaccharides represent a major surface antigen, the K antigen, and more than 80 distinct K serotypes result from structural diversity in these polymers. However, not all capsules consist of K antigen. Some are due to production of an extensive layer of a polymer structurally identical to a lipopolysaccharide O antigen, but distinguished from lipopolysaccharide by the absence of terminal lipid A-core. Recent research has provided insight into the manner in which capsules are organized on the Gram-negative cell surface, the pathways used for their assembly, and the regulatory processes used to control their expression. A limited repertoire of capsule expression systems are available, despite the fact that the producing bacteria occupy a variety of ecological niches and possess diverse physiologies. All of the known capsule assembly systems seen in Gram-negative bacteria are represented in E. coli, as are the majority of the regulatory strategies. Escherichia coli therefore provides a variety of working models on which studies in other bacteria are (or can be) based. In this review, we present an overview of the current molecular and biochemical models for capsule expression in E. coli. By taking into account the organization of capsule gene clusters, details of the assembly pathway, and regulatory features that dictate capsule expression, we provide a new classification system that separates the known capsules of E. coli into four distinct groups.  相似文献   

14.
15.
Cold-shock response and cold-shock proteins.   总被引:13,自引:0,他引:13  
  相似文献   

16.
17.
18.
P-type ATPases function to provide homeostasis in higher eukaryotes, but they are essentially ubiquitous, being found in all domains of life. Thever and Saier [J Memb Biol 2009;229:115-130] recently reported analyses of eukaryotic P-type ATPases, dividing them into nine functionally characterized and 13 functionally uncharacterized (FUPA) families. In this report, we analyze P-type ATPases in all major prokaryotic phyla for which complete genome sequence data are available, and we compare the results with those for eukaryotic P-type ATPases. Topological type I (heavy metal) P-type ATPases predominate in prokaryotes (approx. tenfold) while type II ATPases (specific for Na(+),K(+), H(+) Ca(2+), Mg(2+) and phospholipids) predominate in eukaryotes (approx. twofold). Many P-type ATPase families are found exclusively in prokaryotes (e.g. Kdp-type K(+) uptake ATPases (type III) and all ten prokaryotic FUPA familes), while others are restricted to eukaryotes (e.g. phospholipid flippases and all 13 eukaryotic FUPA families). Horizontal gene transfer has occurred frequently among bacteria and archaea, which have similar distributions of these enzymes, but rarely between most eukaryotic kingdoms, and even more rarely between eukaryotes and prokaryotes. In some bacterial phyla (e.g. Bacteroidetes, Flavobacteria and Fusobacteria), ATPase gene gain and loss as well as horizontal transfer occurred seldom in contrast to most other bacterial phyla. Some families (i.e. Kdp-type ATPases) underwent far less horizontal gene transfer than other prokaryotic families, possibly due to their multisubunit characteristics. Functional motifs are better conserved across family lines than across organismal lines, and these motifs can be family specific, facilitating functional predictions. In some cases, gene fusion events created P-type ATPases covalently linked to regulatory catalytic enzymes. In one family (FUPA Family 24), a type I ATPase gene (N-terminal) is fused to a type II ATPase gene (C-terminal) with retention of function only for the latter. Several pseudogene-encoded nonfunctional ATPases were identified. Genome minimalization led to preferential loss of P-type ATPase genes. We suggest that in prokaryotes and some unicellular eukaryotes, the primary function of P-type ATPases is protection from extreme environmental stress conditions. The classification of P-type ATPases of unknown function into phylogenetic families provides guides for future molecular biological studies.  相似文献   

19.
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.  相似文献   

20.
The ability of Ralstonia solanacearum strain GMI1000 to cause disease on a wide range of host plants (including most Solanaceae and Arabidopsis thaliana) depends on genes activated by the regulatory gene hrpB. HrpB controls the expression of the type III secretion system (TTSS) and pathogenicity effectors transiting through this pathway. In order to establish the complete repertoire of TTSS-dependent effectors belonging to the Hrp regulon and to start their functional analysis, we developed a rapid method for insertional mutagenesis, which was used to monitor the expression of 71 candidate genes and disrupt 56 of them. This analysis yielded a total of 48 novel hrpB-regulated genes. Using the Bordetella pertussis calmodulin-dependent adenylate cyclase reporter fusion system, we provide direct biochemical evidence that five R. solanacearum effector proteins are translocated into plant host cells through the TTSS. Among these novel TTSS effectors, RipA and RipG both belong to multigenic families, RipG defining a novel class of leucine-rich-repeats harbouring proteins. The members of these multigenic families are differentially regulated, being composed of genes expressed in either an hrpB-dependent or an hrpB-independent manner. Pathogenicity assays of the 56 mutant strains on two host plants indicate that, with two exceptions, mutations in individual effectors have no effect on virulence, a probable consequence of genetic and functional redundancy. This large repertoire of HrpB-regulated genes, which comprises > 20 probable TTSS effector genes with no counterparts in other bacterial species, represents an important step towards a full-genome understanding of R. solanacearum virulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号