首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactobacillus reuteri shows certain beneficial effects to human health and is recognized as a probiotic. However, its application in frozen foods is still not popular because of its low survival during freezing and frozen storage. Cell immobilization technique could effectively exert protection effects to microbial cells in order to enhance their endurance to unfavorable environmental conditions as well as to improve their viability and cell concentration. Ca-alginate and κ-carrageenan were used to immobilize L. reuteri in this research, and the immobilized cells were exposed to different freezing temperatures, i.e. − 20 °C, − 40 °C, − 60 °C, − 80 °C, and stored at − 40 °C and − 80 °C for 12 weeks. The objectives were to study the protection effects of cell immobilization against the adverse conditions of freezing and frozen storage, and the effects of freezing temperatures to the immobilized cells. Cell immobilization was used to raise the survival of L. reuteri during freezing and frozen storage in order to develop frozen foods with the probiotic effects of L. reuteri. Results indicated that immobilized L. reuteri possessed better survival in both freezing and frozen storage. The survival of immobilized L. reuteri was higher than that of free cells, and the effects of lower freezing temperature were better than higher freezing temperature. The immobilization effects of Ca-alginate were found to be superior to κ-carrageenan. Cell immobilized L. reuteri exhibits potential to be used in frozen foods.  相似文献   

2.

1. 1. The effects of sudden changes by increasing or decreasing the measurement temperature on the oxygen consumption of the brains of Bufo arenarum and Leptodactylus ocellatus were determined.

2. 2. The experiments were carried at in vitro at temperatures which range from 4 to 37°C. The brain was oxygenated and stabilized for 20 min at each of the temperatures to which it was subjected before oxygen consumption measurements were made.

3. 3. A theoretical curve representing the variation of oxygen consumption with temperature was calculated according to the following exponential relationship; for Leptodactylus ocellatus y = 0.408 × 1.07x and for Bufo arenarum y = 0.389 × 1.065x.

4. 4. These results were compared with the brain oxygen consumption of animals acclimated to different temperatures, whose oxygen consumption was measured at a fixed temperature. Only Leptodactylus ocellatus had a significantly lower oxygen consumption in a high range of temperatures, indicating thermal compensation, probably to save metabolic reserves.

5. 5. No deterioration of the brain tissue was observed, as several passages from high to low temperatures in the range of 20°–30°C, showed a reversible oxygen consumption in acclimated and non-acclimated Bufo arenarum and Leptodactylus ocellatus.

Author Keywords: Anuran brain; brain metabolism; oxygen consumption; acclimation  相似文献   


3.

1. Water fleas (Daphnia magna) bred at 23°C were non-responsive to temperatures between 13 and 25°C.

2. At the lower (11°C) and upper limits (30°C) their klinokinetic avoidance behaviour showed a larger intraindividual than interindividual variation.

3. Thermal sensitivity for avoidance responses in D. magna was about 1.5°C.

4. For D. magna bred for one parthenogenetic generation at 14°C heat avoidance temperature was about 8°C lower, and cold avoidance temperature was about 1°C higher than in D. magna from 23°C.

5. In group experiments the animals showed some preference for the acclimation temperature.

6. Cold induced stenothermy and warm induced eurythermy in D. magna were related to the mode of reproduction.

Author Keywords: Thermal gradients; Thermal sensitivity; Avoidance; Preference; Daphnia magna; Thigmotaxis; Eurythermy; Stenothermy; Reproduction  相似文献   


4.
Metabolic characteristics of the sea cucumber Apostichopus japonicus (Selenka) during aestivation were studied in the laboratory. The effects of water temperature on oxygen consumption rate (OCR) and ammonia-N excretion rate (AER) in A. japonicus were determined by the Winkler and Hypobromite methods, respectively. Mature (large, 148.5 ± 15.4 g, medium 69.3 ± 6.9 g) and immature (small, 21.2 ± 4.7 g) individuals aestivated at water temperatures of 20 and 25 °C, respectively. The metabolic characteristics of mature individuals were different from immature individuals during this period. The OCR of mature sea cucumbers peaked at 20 °C, and then dropped significantly at higher temperatures, whereas the OCR of the immature animals continued to increase slightly, even beyond the aestivation temperature. The AER of mature individuals peaked at 20 °C, while that of the immature animals peaked at 25 °C. The relationships between dry weight (DW) and absolute oxygen consumption (R) and absolute ammonia-N excretion (N) could be described by the regression equation R or N = aWb. With the exception of 15 °C, the O / N ratios (calculated in atomic equivalents) of large size sea cucumbers was close to 20 across the temperatures used in this study, indicating that their energy source was a combination of lipid and protein. On the other hand, apart from small individuals maintained at 10 °C, the O / N ratios of the medium and small sea cucumbers were close to 10, indicating that protein was their major energy source. The O / N ratios in all size groups remained unchanged after aestivation was initiated.  相似文献   

5.
The rate of development of Lymnaea auricularia eggs was studied at various constant temperatures between 10° and 36°C. Development was accelerated as the temperature increased and at 36°C the eggs failed to develop. Spring eggs showed differences in their rate of development when compared with summer eggs when measured at similar tempertures.

Both spring and summer eggs were more than 90% fertile. Hatching success was high at temperatures between 10° and 30° (100%–82/9%); while at 34°C it was reduced to 60.6% for spring eggs. It was above 87% at temperatures between 10° and 34°C but it dropped to 62.3% at 36°C for summer eggs.

In one regularly changing temperature experiment a significant acceleration (P < .05) was found. In two others there was no significant difference beween predicted and observed egg durations. In one suddenly changing temperature regime (1 day at 20°, 1 day at 30° and so on) a huge retardation of development was found. In the other suddenly changing experiment (1 day at 15°, 1 day at 25°) no significant difference was found.

The exposure of eggs to extreme temperature (4°C, freezing and 4°C caused a retardation in the race of subsequent development of eggs at 25°C.  相似文献   


6.
A biocatalyst prepared by the immobilization of a cryotolerant strain of Saccharomyces cerevisiae on gluten pellets was used for batch and continuous fermentation at low temperatures. The immobilized yeast showed important operational stability in repeated batch fermentations without a decrease of activity even at 0 and 5°C. Repeated batch fermentations using the biocatalyst resulted in improvement of ethanol productivity in comparison with bottom brewing fermentation and free cells using the same yeast strain. At 0 and 10°C, the fermentation rate was four and seven times higher than that of free cells, respectively. For immobilized yeast, diacetyl and polyphenol contents were lower and the alcohol concentration higher at low temperatures (0–7°C) when compared to free cells. Fine clarity was also observed in the beers. Continuous brewing using gluten-supported biocatalyst had an operational stability of 3 months with relatively high productivity and without contamination. Polyphenol and bitterness contents were lower in the continuous process than those of batch fermentations, but at low temperature (5°C) they were higher. The diacetyl content was higher than in batch fermentations and beers had a fine aroma and taste.  相似文献   

7.
Oxygen consumption in the dark by the marine diatom Leptocylindrus danicus Cleve was measured in batch culture under 49 combinations of temperature (5, 10, 15, 20°C), daylength (15:9, 12:12, 9:15 LD), and irradiance (at least four irradiances per daylength). Dark respiration was influenced by previous light history and temperature. Elevated respiration rates characterized cells grown under higher irradiances at 10, 15, and 20°C; the effects of previous light history were more evident at higher temperatures. At 5°C, oxygen consumption was unaffected by growth irradiance. The highest respiration rates were measured at 20°C; the Q10 value for dark respiration (5 to 20°C) was 4.0. Daylength affected oxygen consumption at 15 and 20°C. The mean R:P ratio in all experiments was 0.139, with lower ratios at higher temperatures and irradiances, and higher ratios at lower temperatures and irradiances. The R:P ratio was unaffected by daylength. Carbon-specific respiration rates exceeded excretion losses in all experiments except under high irradiances at 5°C. The E:R ratio was smaller at lower irradiances and higher temperatures; daylength effects were not evident.  相似文献   

8.
Thermal preference of the salamander Desmognathus fuscus was measured in a linear thermal gradient with floor temperatures ranging from 10 to 30°C. Salamanders were acclimated to 21±1°C and a 12 : 12 photoperiod with photophase centered at 1200 h for 8 weeks prior to being placed in the gradient. Substrate temperatures were measured under the salamanders’ stomachs from 1200 to 2400 h at 2 h intervals immediately after feeding and after seven days fasting. We found no selection for temperature in fasting or postprandial D. fuscus. We compared the rate at which D. fuscus cooled and heated with that of a control and found no significant difference. We determined the desiccation rate of D. fuscus at 16 and 26°C and found a significantly more rapid desiccation at 26°C.  相似文献   

9.
Psyttalia cosyrae (Wilkinson) (Hymenoptera: Braconidae) is a koinobiont, solitary larval-pupal parasitoid of Ceratitis cosyra (Walker) (Diptera: Tephritidae), and possibly other tephritid fruit flies. The effect of temperature on developmental time and longevity of this parasitoid was investigated and the thermal requirement at six constant temperatures (15±0.5, 20±0.5, 25±0.5, 27±0.5, 30±0.5, and 33±0.05°C) and 60-70% R.H was determined. The developmental rate increased with an increase in temperature. Females took a longer time to complete development than males at all temperatures tested. Development from egg to adult emergence required 244 degree-days (DD) above a thermal threshold of 11.9°C for both sexes pooled, 233 DD above 12.0°C for males and 256 DD above 11.6°C for females. Adult longevity was affected by temperature, and females lived longer than males at all temperatures tested.  相似文献   

10.
Ustilago bullata is frequently encountered on the exotic winter annual grass Bromus tectorum in western North America. To evaluate the biocontrol potential of this seedling-infecting pathogen, we examined the effect of temperature on the infection process. Teliospore germination rate increased linearly with temperature from 2.5 to 25°C, with significant among-population differences. It generally matched or exceeded host seed germination rate over the range 10-25°C, but lagged behind at lower temperatures. Inoculation trials demonstrated that the pathogen can achieve high disease incidence when temperatures during infection range 20-30°C. Disease incidence was drastically reduced at 2.5°C. Pathogen populations differed in their ability to infect at different temperatures, but none could infect in the cold. This may limit the use of this organism for biocontrol of B. tectorum to habitats with reliable autumn seedling emergence, because cold temperatures are likely to limit infection of later-emerging seedling cohorts.  相似文献   

11.
In vitro oxygen consumption of brown adipose tissue (BAT) was compared to that of brain. heart, muscle, diaphragm and intestine from rat and Jaculus orientalis, a hibernating desert rodent. Eleven assay temperatures between 5 and 44°C were used. BAT from Jaculus orientalis showed the highest oxygen consumption and was temperature independent between 15 and 40°C. For other tissues there was little difference betwee the two species with the exception of higher transition temperatures for certain tissues from jerboa.  相似文献   

12.
To elucidate the mechanism of bloom outbreaks of Chattonella ovata (Raphidophyceae), we investigated the cysts of C. ovata and succeeded in finding them from the bottom sediments of Hiroshima Bay. The morphology of the cysts was mostly hemispherical in shape, with a diameter of ca. 30 μm and height of ca. 20 μm. The cysts were usually adhering to solid materials, such as diatom frustules, yellow-greenish in color and had several dark brown grains. The cyst wall was smooth and had no ornamentation. Because the morphological characteristic of the cysts was in general agreement with those of Chattonella antiqua and Chattonella marina, it was difficult to differentiate the cysts of these three species. Germination of the cysts of C. ovata was observed at temperatures from 17.5 to 30 °C, but not at 15 °C or below. The number of the germinated cysts increased with increasing temperature and the optimum temperature for germination was 30 °C. Although cysts of C. antiqua and C. marina germinated at temperatures from 15 to 30 °C, optimum temperature of germination was 22.5 °C. The lower limit and optimum temperatures for germination of C. ovata cysts was higher than for C. antiqua and C. marina. The role of cysts in the population dynamics of C. ovata is discussed.  相似文献   

13.
Fermentation, formulation and drying studies are necessary and important in order to simplify production, transportation, storage and application of biocontrol agents. Air-drying is a convenient and economical drying method for developing microbial biocontrol products. Experiments were designed to determine the effect of temperature shock during liquid cultivation on cell survival of a Fusarium head blight biocontrol agent Cryptococcus nodaensis OH 182.9 after air-drying. OH 182.9 cultures were grown at various temperatures in semi-defined complete liquid media, with cultures grown at 25°C for 48 h serving as the standard control culture condition. Harvested cultures were mixed with 10% diatomaceous earth (DE), vacuum filtered, air dried for 20 h at 60-70% RH, and stored at 4°C. In general, cells grown at 25°C for 20 h followed by cultivation at 15°C for 28 h survived air-drying better than control cells. The survival of cells subjected to heat shock at 31°C generally did not differ from control cells regardless of whether heat shock was applied at the late exponential or early stationary stage of growth. In another experiment designed to optimize the effect of cold temperatures during cultivation on subsequent survival of air-dried cells in DE at 4°C and room temperature (25°C), prolonged (28 h) cold shock at 10 and 15°C after incubation at 25°C for 20 h enhanced the storage stability (shelf-life) of a DE-formulated OH 182.9 product. In greenhouse tests, air-dried cells of OH 182.9 stored for 6 weeks at 4°C maintained a higher biocontrol efficacy than cells stored for 6 weeks at 25°C.  相似文献   

14.
Growth and dark respiration rates of the marine diatom Leptocylindrus danicus Cleve were measured in axenic batch culture under 49 combinations of temperature (5, 10, 15, 20°C), daylength(15:9, 12:12, 9:15 LD), and irradiance (at least four irradiances per daylength). Cell division rates exhibited a temperature-dependent daylength effect. Optimal temperatures occurred between 15 and 20°C. Both the initial slope () and the growth rate at light saturation (μmax) were strongly influenced by temperature; increased five-fold and μmax by an order of magnitude between 5 and 20°C. The compensation irradiance (Ic) was independent of temperature. μmax was 2.7 div day−1 at 20°C, 2.6 at 15°C, 1.1 at 10°C, and 0.3 at 5 °C. Cells grown under 15:9 and 12:12 LD exhibited similar growth-light curves at 20°C and at 15°C. μmax of cells grown under 9:15 LD at these temperatures were substantially lower than μmax under longer daylengths. Growth at 10 and 5°C was independent of daylength.

Dark respiration rates were a linear function of cell division rates at 10, 15, and 20°C, and support the concept that growth rate is dependent on dark respiration rate. These relationships were not influenced by daylength. A detectable relationship between dark respiration and growth at 5°C was not observed.

Photosynthesis and excretion showed temperature-dependent curvilinear relationships with growth rate, reflecting the lower saturation irradiance for growth compared to light saturation of photosynthesis and excretion. The relationship between Chl a-specific photosynthesis and growth was controlled by the C:Chl a ratio, which showed a positive correlation with cell division rate. At 15 and 20°C, light saturation of growth was associated with C:Chl a ratios of 40 to 60; at 5 and 10°C, cells growing at μmax contained C:Chl a in ratios of 80 to 110.  相似文献   


15.
In this study, the maximum and minimum lethal temperatures (LT50) of L. intermedia and L. laeta were determined in two treatments: gradual heating (25–50°C) and cooling (25°C to −5°C), and 1 h at a constant temperature. In gradual temperatures change, L. intermedia mortality started at 40°C and the LT50 was 42°C; for L. laeta, mortality began at 35°C and the LT50 was 40°C. At low temperatures, mortality was registered only at −5°C for both species. In the constant temperature L. intermedia showed a maximum LT50 at 35°C and L. laeta at 32°C; the minimum LT for both species was −7°C.  相似文献   

16.
The enthalpy of unfolding (ΔuH) of carbonic anhydrase II was determined by titrating the protein with acid and measuring the heat using isothermal titration calorimetry (ITC) in the temperature range of 5 to 59 °C. By combining the ITC results with our previous findings by differential scanning calorimetry (DSC) in the temperature range of 39 to 72 °C, the ΔuH dependence over a wide temperature range was obtained. The temperature dependence of the enthalpy displays significant curvature indicating that the heat capacity of unfolding (ΔuCp) is dependent on temperature. The T-derivative of ΔuCp was equal to 100 ± 30 J/(mol × K2), with the result that the ΔuCp is equal to 15.8 kJ/(mol × K) at 5 °C, 19.0 kJ/(mol × K) at 37 °C and 21.8 kJ/(mol × K) at 64 °C. The enthalpy of unfolding is zero at 17 °C. At lower temperatures, the ΔuH becomes exothermic.

This method of determining protein unfolding thermodynamics using acid-ITC, significantly widens the accessible T-range, provides direct estimate of the thermodynamic parameters at physiological temperature, and gives further insight into the third T-derivative of the Gibbs free energy of unfolding.  相似文献   


17.
(1)Final temperature preferendum of juvenile (0.9–1.9 g) and adult (5.2–12.5 g) angelfish Pterophyllum scalare were determined with acute and gravitation methods. The final preferenda were similar, independent of the method and development stage (29.0–31.1°C).
(2)The critical thermal maxima (CTMax) for juveniles were 36.9°C, 37.6°C, 40.6°C, 40.8°C and for adults 38.4°C, 38.6°C, 41.0°C, 42.1°C. Adult angelfish CTMax was slightly higher than in juveniles (1°C; P<0.05); the endpoint of CTMax was the onset of spasms.
(3)The acclimation response ratio for both stages had an interval of 0.33–0.44; these values are in agreement with results for subtropical and tropical fishes.
(4)Therefore it is recommended that angelfish cultivation should be consistent with temperatures that do not change abruptly throughout the year and temperature maximum does not exceed 30°C.
  相似文献   

18.
Paecilomyces lilacinus and in particular the commercial strain 251 has been intensively tested for biological control of plant parasitic nematodes. Since this species has been mentioned in a number of reports concerning infection of humans, the human health risk for Paecilomyces lilacinus strain 251 was investigated. The effects of time, temperature and growth medium on radial colony growth and germination were determined. Additionally, exposure to 36°C and its effect on germ-tube extension and on survival of conidia was evaluated. Radial growth was significantly affected by temperature, growth medium and their interaction. Optimum temperatures were between 24 and 30°C, but no growth was found at 36°C. Germination rate was significantly influenced by time, medium, temperature and their interactions. The optimum temperature range for germination was between 28 and 30°C. Formulated conidia were capable of germinating at 36°C. However, studies on germ-tube extension conducted at 36°C showed a delay in development for 28-49 h and no further germ-tube extension was found after exposure for 80-95 h. Slopes of survival curves were significantly influenced by the type of conidia tested. In general, conidia did not survive exposure to 36°C for 168 h. These experiments indicate the temperature conditions where the strain is likely to be active and provide supporting data for full environmental and health risk assessments of biocontrol fungi.  相似文献   

19.
Male rats (450 g, n=11/group) were heated at an ambient temperature of 42°C until a rectal temperature of 42.8°C was attained. Rats, then received either saline (30°C)+tail ice water immersion (F+I) or saline (30°C)+tail ice water immersion+Nifedipine, a peripheral vasodilator, (F+I+N) to determine cooling rate effectiveness and survivability. The time to reach a rectal temperature of 42.8°C averaged 172 min in both groups resulting in similar heating rates (0.029°C/min). The cooling rates in group F+I and F+I+N were not significantly different from each other. We conclude that since Nifedipine did not improve cooling rates when combined with fluid+tail ice water immersion, its use as a cooling adjunct does not seem warranted.  相似文献   

20.
and 1972. Effects of changes in temperature and saturation deficit on the survival of eggs of Trichostrongylus colubriformis (Nematoda: Trichostrongylidae) International Journal for Parasitology, 2: 439–447. In conformity with a hypothesis relating to survival of the developing T. colubriformis egg exposed to desiccation, samples of eggs initially at the early blastomere stage of development showed decreased mortality during development with increasing temperature of incubation up to 25°C, for approximately constant rates of evaporation. At 30°C there was a higher percentage mortality for fixed evaporation rate than at 20° or 25°C. It is suggested that at 30°C there may be an abrupt increase in the initial rate of water loss from the developing embryo resulting from a change in the permeability to water of the lipid layer of the egg envelope.

Fully embryonated T. colubriformis eggs were obtained by incubation at 20°C in the presence of a moderate saturation deficit during development. When such eggs were transferred to 30° and 40°C there was no mortality at the higher temperature, providing that the saturation deficit was substantially increased. A hypothesis proposed for survival at high temperature is based on analogy with water loss through the arthropod cuticle and is attributed to a decrease in permeability of the protein-chitin layer of the egg envelope under conditions of high evaporation rate, even though permeability of the lipid layer might be increased by high temperature.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号