首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The intracellular lipase production by Mucor circinelloides URM 4182 was investigated through a step-by-step strategy to attain immobilized whole-cells with high lipase activity. Physicochemical parameters, such as carbon and nitrogen sources, inoculum size and aeration, were studied to determine the optimum conditions for both lipase production and immobilization in polyurethane support. Olive oil and soybean peptone were found to be the best carbon and nitrogen sources, respectively, to enhance the intracellular lipase activity. Low inoculum level and poor aeration rate also provided suitable conditions to attain high lipase activity (64.8 ± 0.8 U g?1). The transesterification activity of the immobilized whole- cells was assayed and optimal reaction conditions for the ethanolysis of babassu oil were determined by experimental design. Statistical analysis showed that M. circinelloides whole-cells were able to produce ethyl esters at all tested conditions, with the highest yield attained (98.1 %) at 35 °C using an 1:6 oil-to-ethanol molar ratio. The biocatalyst operational stability was also assayed in a continuous packed bed reactor (PBR) charged with glutaraldehyde (GA) and Aliquat-treated cells revealing half-life of 43.0 ± 0.5 and 20.0 ± 0.8 days, respectively. These results indicate the potential of immobilized M. circinelloides URM 4182 whole-cells as a low-cost alternative to conventional biocatalysts in the production of ethyl esters from babassu oil.  相似文献   

2.
A non-steady-state mathematical model system for the kinetics of adsorption and biodegradation of reactive black 5 (RB5) by Funalia trogii (F. trogii) ATCC 200800 biofilm on fly ash-chitosan bead in the fluidized bed process was derived. The mechanisms in the model system included adsorption by fly ash-chitosan beads, biodegradation by F. trogii cells and mass transport diffusion. Batch kinetic tests were independently performed to determine surface diffusivity of RB5, adsorption parameters for RB5 and biokinetic parameters of F. trogii ATCC 200800. A column test was conducted using a continuous-flow fluidized bed reactor with a recycling pump to approximate a completely-mixed flow reactor for model verification. The experimental results indicated that F. trogii biofilm bioregenerated the fly ash-chitosan beads after attached F. trogii has grown significantly. The removal efficiency of RB5 was about 95 % when RB5 concentration in the effluent was approximately 0.34 mg/L at a steady-state condition. The concentration of suspended F. trogii cells reached up to about 1.74 mg/L while the thickness of attached F. trogii cells was estimated to be 80 μm at a steady-state condition by model prediction. The comparisons of experimental data and model prediction show that the model system for adsorption and biodegradation of RB5 can predict the experimental results well. The approaches of experiments and mathematical modeling in this study can be applied to design a full-scale fluidized bed process to treat reactive dye in textile wastewater.  相似文献   

3.
Lipase from Pseudomonas fluorescens biotype I was immobilized by adsorption of anion exchange resin using glutaraldehyde to enhance the adsorption. The activity yield of the immobilized lipase was very low (below 1%) when lipase activity was measured using emulsion substrate. The activity yield was 10-70% when lipase activity was measured using non-emulsion substrate. Countercurrent reactors for hydrolysis of oil using non-emulsion substrate were studied. A fluidized bed reactor was found to be superior to a fixed bed one since in a fixed bed reactor the separation rate of the two layers was slow and the flow rate of the reactor had to be slower than the separation rate. A fluidized bed reactor system equipped with settling compartments and stirring compartments was devised. Continuous lipolysis at 60 degrees C and continuous separation of oily product and water soluble product were performed. After continuous operation for more than 3 months, 70% of the initial activity of the immobilized lipase was observed at the end of the reaction.  相似文献   

4.
The conventional deacidification method is difficult to achieve a better refining effect due to the high acid value in the rice bran crude oil, and the enzymatic esterification deacidification method can effectively reduce the acid value without generating chemical waste. In this study, the free lipase was immobilized on a magnetic polymer carrier Fe3O4/SiOx-g-P (GMA: glycidyl methacrylate) to obtain a immobilized lipase with a particle size of 105.30 ± 1.1 nm and an enzyme activity of 6580 ± 9.6 PLU/g (PLU: enzyme activity unit). Based on the batch deacidification process parameters, a multi-stage magnetic fluidized bed continuous circulation deacidification system was designed, and then the motion law of nanomagnetic immobilized lipase particles in liquid–solid magnetic fluidized bed was simulated by computer. When the iterative step was 5 × 10−5 s, the open porosity of the porous plate was 35.0%, the rice bran oil flow rate was 3.0 mm/s, and the magnetic field strength was 25.0 mT, which was beneficial to the deacidification reaction of rice bran oil. Under the conditions of magnetic immobilized lipase dosage of 4.0%, the phytosterol dosage of 22.0%, the molecular sieve dosage of 10%, the esterification temperature of 78.0 °C and the FFA (free fatty acid) content in rice bran oil decreased to 1.5%, after 48 h of reaction. The conversion rate is 92.8%, which provides a theoretical basis for the subsequent guidance of magnetic fluidized bed enzymatic continuous deacidification.  相似文献   

5.
In this work, the transesterification reaction of isoamyl alcohol obtained from fusel oil and leading to the synthesis of isoamyl acetate was conducted simultaneously with in situ ethanol removal, which allows to shift the reaction equilibrium toward ester synthesis. The extracellular Aspergillus oryzae lipase was immobilized into calcium alginate. Effects of immobilization conditions on the loading efficiency and on the specific activity of entrapped lipase were investigated. The kinetic transfer of volatile reactants from the reactor was investigated using an experimentally first order kinetic model, in order to approve the feasibility of the liquid-gas system with continuous ethanol removal in the ester synthesis. The effects of the most influent parameters affecting the reaction have been also investigated using a Doehlert matrix design. The better operating conditions for isoamyl acetate synthesis were: a temperature of 68.5°C and a respective isoamyl alcohol and A. oryzae lipase concentration of 0.72 M and 2.39 g/L. At these conditions, the resulting reaction conversion and ethanol extraction yields were of 89.55 and 69.60%, respectively. The use of the fluidized bed reactor with continuous ethanol removal has allowed to improve the reaction conversion which was two times than the conversion higher obtained in batch reactor. Furthermore, under the optimized conditions in the fluidized bed reactor, the reaction conversion and the ethanol extraction yields were increased by 44.8 and 36.2%, respectively.  相似文献   

6.
Summary In order to minimize the adverse effect of CO2 gas in a packed bed immobilized yeast reactor, a fluidized bed reactor was used for the continuous production of ethanol from glucose. Immobilized yeast was prepared by entrapping whole cells of Saccharomyces cerevisiae within a Caalginate matrix. It was found that the efficiency of the ethanol production in a fluidized bed reactor was 100% better than that for a packed bed reactor system. The alcohol productivity obtained was 21 g/l/hr in a fluidized bed reactor at 94% of conversion level.  相似文献   

7.
In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon® rings as a carrier. The medium was a solution of lactose (15–30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h?1 (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h?1: the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%w.  相似文献   

8.
Ethanol fermentation by immobilized Saccharomyces cerevisiae cells in magnetic particles was successfully carried out in a magnetically stabilized fluidized bed reactor (MSFBR). These immobilized magnetic particles solidified in a 2 % CaCl(2) solution were stable and had high ethanol fermentation activity. The performance of ethanol fermentation of glucose in the MSFBR was affected by initial particle loading rate, feed sugar concentration and dilution rate. The ethanol theoretical yield, productivity and concentration reached 95.3%, 26.7 g/L h and 66 g/L, respectively, at a particle loading rate of 41% and a feed dilution rate of 0.4 h(-1) with a glucose concentration of 150 g/L when the magnetic field intensity was kept in the range of 85-120 Oe. In order to use this developed MSFBR system for ethanol production from cheap raw materials, cane molasses was used as the main fermentation substrate for continuous ethanol fermentation with the immobilized S. cerevisiae cells in the reactor system. Molasses gave comparative ethanol productivity in comparison with glucose in the MSFBR, and the higher ethanol production was observed in the MSFBR than in a fluidized bed reactor (FBR) without a magnetic field.  相似文献   

9.
A continuous fluidized bed reactor operation system has been developed for ethanol production by Zymomonas mobilis using hydrolysed B-starch without sterilization. The operation system consists of two phases. In the first phase macroporous glass carriers in a totally mixed fluidized bed reactor were filled up totally with a monoculture of Z. mobilis by fast computer-controlled colonization, so that in the subsequent production phase no contaminants, especially lactic-acid bacteria, could penetrate into the carrier beads. In the production phase the high concentration of immobilized Z. mobilis cells in the fluidized bed reactor permits unsterile fermentation of hydrolysed B-starch to ethanol at short residence times. This results in wash-out conditions for contaminants from the substrate. Long-term experimental studies (more than 120 days) of unsterile fermentation of hydrolysed B-starch in the laboratory fluidized bed reactor (2.2 l) demonstrated stable operation up to residence times of 5 h. A semi-technical fluidized bed reactor plant (cascade of two fluidized bed reactors, each 55 l) was operated stably at a mean residence time of 4.25 h. Glucose conversion of 99% of the unsterile hydrolysed B-starch was achieved at 120 g glucose/l–1 in the substrate, resulting in an ethanol concentration of 50 g·l–1 and an ethanol space-time yield of 13 g·l–1·h–1. This is a factor of three compared to ethanol fermentation of hydrolysed B-starch with Z. mobilis in a continuous stirred tank reactor, which can only be operated stably under sterile conditions. Correspondence to: D. Weuster-Botz  相似文献   

10.
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S?=?1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries.  相似文献   

11.
White rot fungi (WRF) are applicable to biodegradation of recalcitrant pollutants. However, excessive biomass growth typical for WRF cultivation can hinder their large scale applications. Therefore, immobilization of Irpex lacteus to liquid-core alginate beads restricting excessive mycelium growth and simultaneously keeping high degradation rate of pollutants was tested. Effective diffusivities of dyes to the beads varied from (2.98 ± 0.69) × 10?10 to (10.27 ± 2.60) × 10?10 m2/s. Remazol Brilliant Blue R (RBBR), Reactive Orange 16 (RO16), and Naphthol Blue Black (NBB) were used as model dyes. The immobilized fungus decolorized model dyes when applied both in microwell plates and in fluidized bed reactors. Using the microwell plates, the apparent reaction rate constants ranged from (2.06 ± 0.11) × 10?2 to (11.06 ± 0.27) × 10?2 1/h, depending on the dye used and its initial concentration. High initial concentrations negatively affected the dye decolorization rate. No fungal growth outside the beads was observed in fluidized bed reactors and thus no operational problems linked to an excessive biomass growth occurred. When RBBR was decolorized in subsequent batches in the fluidized bed reactor, the apparent reaction rate constant increased from (11.63 ± 0.35) × 10?2 to (29.26 ± 7.19) × 10?2 1/h.  相似文献   

12.
A novel strategy for the production of lipase by Bacillus sp. ITP-001 in a stirred tank fermenter using perfluorodecalin (PFD) was studied. Firstly, a response surface methodology 22 with three central points was employed to optimise the effect of agitation speed and aeration rate in lipase production. According to the response from the experimental designs, 300 rpm (revolutions per minute) and 0.5 vvm (air volume/liquid volume per minute) were found to provide the best condition (lipolytic activity: LA = 3,140.76 U mL?1). Then, the influence of PFD concentration on the fermentation process was evaluated. Incorporation of PFD at all concentrations above 1 % had no statistically significant influence on lipase production, that is, the previous optimisation allowed the reduction of the amount of PFD added besides increasing lipase production. Furthermore, PFD could be used in three sequential fermentations without altering the statistical production of lipase, reducing by 67 % the cost of PFD addition.  相似文献   

13.
【目的】为开发高效的高浓度木质纤维素燃料乙醇蒸馏废水厌氧处理及资源化利用工艺,以活性炭为载体,在实验室规模上对高温厌氧流化床反应器处理木质纤维素燃料乙醇蒸馏废水进行研究。【方法】反应器经65 d梯度驯化后启动,对工艺参数进行一系列优化,并通过基于16S rRNA基因的分子生态学技术分析厌氧污泥中的优势菌群。【结果】实验获得了最优的反应条件和处理效果:厌氧流化床反应器(Anaerobic fluidized bed reactor,AFBR)在温度55±1°C、有机负荷率(OLR)13.8 g COD/(L·d)及水力停留时间(HRT)48 h操作时,COD去除率达到90%以上,同时甲烷产率达到290 mL/g COD;菌群鉴定分析结果显示高温厌氧活性污泥中Clostridia所占比例最大,产甲烷菌属以Methanoculleus和Methanosarcina为主,其它功能菌群主要为Alphaproteobacteria等。【结论】AFBR反应器可高效降解木质纤维素燃料乙醇蒸馏废水并产生生物能源甲烷,其反应体系内微生物种类丰富。  相似文献   

14.
Summary Immobilization of Candida rugosa cells on a solid support for extracellular lipase production has been explored. The use of Ca-alginate beads and of mixed matrix of polyurethane foam/Ca-alginate beads enabled us to operate a batch and a continuous four-phase fluidized bed bioreactor. Cells co-entrapped together with polyurethane into Ca-alginate did not show higher lipase production levels than the cells entrapped in Ca-alginate gels. The addition of gum arabic to the medium greatly enhanced lipase production without affecting the hydrodynamic operating conditions significantly. This fact demonstrates that the reactor system is limited in terms of organic substrate dispersion and direct contact with cells. Correspondence to: C. Solà  相似文献   

15.
Methanolysis of sunflower oil catalyzed by immobilized Aspergillus niger mycelium was studied in a packed-bed reactor. The optimal cultivation parameters for A. niger were determined using full factorial and steepest ascent experimental designs. Sunflower oil, yeast extract and soybean meal were selected as the best carbon and nitrogen sources and were used in the subsequent experiments. Intracellular lipase activity and cell mass concentration were respectively 3.2 and 2.4 times greater and cultivation period decreased by 24 h compared with the initial medium. The optimum values of these most significant parameters were as follows: sunflower oil (13.2 g/L), yeast extract (6.2 g/L), soybean meal (7.4 g/L) and incubation period (72 h) at 30 °C. With A. niger biocatalyst grown in optimized conditions, the biodiesel fuel yield reached 23.1% after sixth pass of recycled reaction mixture through the reactor.  相似文献   

16.
Due to the amount of nutrients available in the agroindustrial wastes, these can be converted into high added-value products by the action of microorganisms in solid-state bioprocesses. The aim of this work was to evaluate the growth physiology and lipase production of the fungus Lichtheimia ramosa using the following Brazilian savannah fruit wastes as substrates: bocaiuva (Acrocomia aculeata), pequi (Caryocar brasiliense), guavira (Campomanesia pubescens), araticum (Annona crassiflora) and seriguela (Spondias purpurea). These residues were triturated, homogenized, adjusted to pH 5.0 and 60 % moisture, sterilized and packaged in plastic tray-type bioreactors before inoculation with 10 % (w/v) of L. ramosa pre-culture medium. The cultivations were conducted in a bacteriological incubator at 30 °C for 40 days. Samples were taken every 5 days and fungi and bacteria contents, proximate composition and lipase activity were evaluated. The maximum fungal counting was observed between 25 and 35 days. L. ramosa reached the stationary phase next to 40 days in all substrates. Mesophilic and psicrophilic aerobic bacteria were not detected. Protein enrichment was obtained for all media, being superior in seriguela residues (391.66 %), followed by pequi (160.04 %), araticum (143.31 %), guavira (102.42 %), and bocaiuva (67.88 %). Lipase production was observed in all cultivated media, except in pequi residues that showed decreasing lipase activity. The higher production was observed in guavira (1.12 U/g) followed by araticum (0.58 U/g), seriguela (0.41 U/g) and bocaiuva (0.21 U/g) waste substrates. It was concluded that the studied fruit wastes have been successfully utilized as substrates for protein enrichment and lipase production with L. ramosa.  相似文献   

17.
The marine strain Pseudomonas otitidis was isolated to hydrolyze the cooked sunflower oil (CSO) followed by the production of lipase. The optimum culture conditions for the maximum lipase production were determined using Plackett–Burman design and response surface methodology. The maximum lipase production, 1,980 U/ml was achieved at the optimum culture conditions. After purification, an 8.4-fold purity of lipase with specific activity of 5,647 U/mg protein and molecular mass of 39 kDa was obtained. The purified lipase was stable at pH 5.0–9.0 and temperature 30–80 °C. Ca2+ and Triton X-100 showed stimulatory effect on the lipase activity. The purified lipase was highly stable in the non-polar solvents. The functional groups of the lipase were determined by Fourier transform-infrared (FT-IR) spectroscopy. The purified lipase showed higher hydrolytic activity towards CSO over the other cooked oil wastes. About 92.3 % of the CSO hydrolysis was observed by the lipase at the optimum time 3 h, pH 7.5 and temperature 35 °C. The hydrolysis of CSO obeyed pseudo first order rate kinetic model. The thermodynamic properties of the lipase hydrolysis were studied using the classical Van’t Hoff equation. The hydrolysis of CSO was confirmed by FT-IR studies.  相似文献   

18.
An extracellular lipase-producing bacterium was isolated from a fecal sample of lion-tailed macaque (Macaca silenus), an endangered Old World monkey that is endemic to the Western Ghats of South India. Morphological, biochemical and molecular analyses identified the bacterium as Serratia marcescens. Production of lipase was investigated in shake-flask culture. Optimum tributyrin concentration of 1.5 % was found to be the most suitable triglyceride to increase lipase production (13.3 U ml?1). The next best lipid source observed was olive oil (11.94 U ml?1), followed by castor oil, coconut oil and palm oil. Analyzing the effect of different carbon sources on lipase production revealed that 2 % glucose yielded higher lipase production than the other tested carbon sources. Investigations on suitable nitrogen source for lipase production revealed that 2 % meat extract yielded higher lipase production. The most suitable trace element for maximum lipase production was zinc sulfate, followed by magnesium sulfate and copper sulfate. Partial characterization of the crude lipase revealed that pH 7.0 and a temperature of 40 °C gave optimal lipase activity. Enzymatic activity of the crude sample was retained over a wide temperature range (20–75 °C), and 70 % of enzyme activity was retained at 60 °C. Testing the effect of various organic solvents on lipase activity revealed that hexadecane increased lipase activity by 85 % over the control.  相似文献   

19.
Slurries containing 20% (w/v) coffee waste solids were treated anaerobically in one- and two-phase thermophilic methane fermentation systems (53°C) with or without pH control. In one-phase methane fermentation using a roller bottle reactor, the maximum gas evolution rate of 0.87 l/l·d was achieved during treatment for 91 d. However, this one-phase methane fermentation did not yield reproducible data. In a two-phase methane fermentation system consisting of a completely stirred tank reactor type (CSTR-type) liquefaction reactor without pH control and an anaerobic fluidized bed type gasification reactor, three-repetitions of treatment were conducted. Each treatment was very stable and the average gas evolution rate per volume of the gasification reactor was about 2.4 l/l·d. Two-repetitions of treatment were then done while controlling pH in the liquefaction at more than 6. The average gas evolution rate per volume of gasification reactor was found to have increased to 10.2 l/l·d, a value which corresponded to 0.84 l/l·d per total volume, including the liquefaction reactor. It was observed that treatment in a two-phase methane fermentation could be repeated in a stable fashion even in the closed system without discharging anything but the coffee waste residues.  相似文献   

20.
The extremely acidophilic microorganisms Bacillus pumilus and Bacillus subtilis were isolated from soil collected from the commercial edible oil and fish oil extraction industry. Optimization of conditions for acidic lipase production from B. pumilus and B. subtilis using palm oil and fish oil, respectively, was carried out using response surface methodology. The extremely acidic lipases, thermo-tolerant acidic lipase (TAL) and acidic lipase (AL), were produced by B. pumilus and B. subtilis, respectively. The optimum conditions for B. pumilus obtaining the maximum activity (1,100 U/mL) of TAL were fermentation time, 96 h; pH, 1; temperature, 50 °C; concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the TAL was 55 kDa. The AL from B. subtilis activity was 214 U/mL at a fermentation time of 72 h; pH, 1; temperature, 35 °C; concentration of fish oil, 30 g/L; maltose concentration, 10 g/L. After purification, an 11.4-fold purity of lipase with specific activity of 2,189 U/mg protein was obtained. The molecular weight of the extremely acidic lipase was 22 kDa. The functional groups of lipases were determined by Fourier transform-infrared (FT-IR) spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号