首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
目的:筛选抗脂多糖(LPS)纳米单域抗体,并制备抗LPS纳米抗体五聚体。方法:以LPS为抗原,从驼源天然单域重链抗体库中筛选抗LPS纳米抗体,利用分子克隆技术将抗LPS单域抗体基因组装入志贺杆菌样毒素B亚基蛋白结构域(VTB)的五聚体特异性表达载体中进行可溶性表达,并用ELISA法鉴定所获抗体的抗原结合活性和特异性。结果:获得抗LPS纳米单域抗体及LPS纳米抗体五聚体;经鉴定,LPS纳米抗体五聚体的抗原结合活性优于抗LPS单域抗体。结论:利用驼源天然单域重链抗体库制备了抗LPS纳米单域抗体及抗LPS纳米抗体五聚体,为脓毒血症的分子诊断、预后判断及寻找生物治疗新靶点奠定了基础。  相似文献   

2.
Ingestion of botulinum neurotoxin (BoNT) results in botulism, a severe and frequent fatal disease known in the world. Current treatments rely on antitoxins, such as equine antitoxin and human botulism immunoglobulin. In some cases, side effects have been reported, including early anaphylactic shock and late serum sickness. Thus, diagnosis and treatment measure of BoNT are necessary and crucial. In the present study, a single-domain variable heavy-chain (VHH) antibody fragment was obtained from an immune dromedary phage display library against the putative binding domain of botulinum neurotoxin E (BoNT/E), a non-toxic 50-kDa fragment. The characteristics of nanobody VHH include excellent production, superior heat stability and specific binding capacity to soluble antigen without cross-reaction to other relevant or irrelevant antigens. A total of 150 ng/Kg of nanobody entirely neutralized 3LD50 of the BoNT/E in an in vivo challenge of the mice. This phenomenon indicates BoNT/E toxin neutralizing capacity of the produced nanobody. These results also suggest possession of unique properties by the nanobody applicable in diagnostics or therapeutic purposes.  相似文献   

3.
Carbonic anhydrase IX (CAIX, gene G250/MN-encoded transmembrane protein) is highly expressed in various human epithelial tumors such as renal clear cell carcinoma (RCC), but absent from the corresponding normal tissues. Besides the CA signal transduction activity, CAIX may serve as a biomarker in early stages of oncogenesis and also as a reliable marker of hypoxia, which is associated with tumor resistance to chemotherapy and radiotherapy. Although results from preclinical and clinical studies have shown CAIX as a promising target for detection and therapy for RCC, only a limited number of murine monoclonal antibodies (mAbs) and one humanized mAb are available for clinical testing and development. In this study, paramagnetic proteoliposomes of CAIX (CAIX-PMPLs) were constructed and used for anti-CAIX antibody selection from our 27 billion human single-chain antibody (scFv) phage display libraries. A panel of thirteen human scFvs that specifically recognize CAIX expressed on cell surface was identified, epitope mapped primarily to the CA domain, and affinity-binding constants (KD) determined. These human anti-CAIX mAbs are diverse in their functions including induction of surface CAIX internalization into endosomes and inhibition of the carbonic anhydrase activity, the latter being a unique feature that has not been previously reported for anti-CAIX antibodies. These human anti-CAIX antibodies are important reagents for development of new immunotherapies and diagnostic tools for RCC treatment as well as extending our knowledge on the basic structure-function relationships of the CAIX molecule.  相似文献   

4.
The carbonic anhydrases (CAs) in the α class are zinc-dependent metalloenzymes. Previous studies have reported that recombinant forms of carbonic anhydrase IX (CAIX), a membrane-bound form of CA expressed in solid tumors, appear to be activated by low levels of zinc independent of its well-studied role at the catalytic site. In this study, we sought to determine if CAIX is stimulated by zinc in its native environment. MDA-MB-231 breast cancer cells express CAIX in response to hypoxia. We compared CAIX activity associated with membrane ghosts isolated from hypoxic cells with that in intact hypoxic cells. We measured CA activity directly using (18)O exchange from (13)CO(2) into water determined by membrane inlet mass spectrometry. In membrane ghosts, there was little effect of zinc at low concentrations on CAIX activity, although at high concentration zinc was inhibitory. In intact cells, zinc had no significant effect on CAIX activity. This suggests that there is an appreciable decrease in sensitivity to zinc when CAIX is in its natural membrane milieu compared to the purified forms.  相似文献   

5.
Monoclonal anti‐SARS‐CoV‐2 immunoglobulins represent a treatment option for COVID‐19. However, their production in mammalian cells is not scalable to meet the global demand. Single‐domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor‐binding domain (RBD) of the SARS‐CoV‐2 Spike protein, we isolated 45 infection‐blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS‐CoV‐2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X‐ray and cryo‐EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune‐escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low‐picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold‐promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape‐mutations.  相似文献   

6.
Thrombolytic therapy by plasminogen activators (PAs) has been a main goal in the treatment of acute myocardial infarction. Despite improved outcomes of currently available thrombolytic therapies, all these agents have different drawbacks that may result in less than optimal outcomes. In order to make tissue plasminogen activator (tPA) more potent, while being more resistant to plasminogen activator inhibitor-1 (PAI-1) and having a higher affinity to fibrin, a new chimeric-truncated form of tPA (CT tPA) was designed and expressed in Pichia pastoris. This novel variant consists of a finger domain of Desmoteplase, an epidermal growth factor (EGF) domain, a kringle 1 (K1) domain, a kringle 2 (K2) domain, in which the lysine binding site (LBS) was deleted, and a protease domain, where the four amino acids lysine 296, arginine 298, arginine 299, and arginine 304 were substituted by aspartic acid. The chimera CT tPA showed 14-fold increase in its activity in the presence of fibrin compared to the absence of fibrin. Furthermore, CT tPA showed about 10-fold more potency than commercially available full-length tPA (Actylase®) and provided 1.2-fold greater affinity to fibrin. A residual activity of only 68 % was observed after incubation of Actylase® with PAI-1, however, 91 % activity remained for CT tPA. These promising findings suggest that the novel CT tPA variant might be an acceptable PA with superior characteristics and properties.  相似文献   

7.
8.
Na(+)/HCO(3)(-) cotransporter (NBC)e1 catalyze the electrogenic movement of 1 Na(+):2 HCO(3)(-) into cardiomyocytes cytosol. NBC proteins associate with carbonic anhydrases (CA), CAII, and CAIV, forming a HCO(3)(-) transport metabolon. Herein, we examined the physical/functional interaction of NBCe1 and transmembrane CAIX in cardiac muscle. NBCe1 and CAIX physical association was examined by coimmunoprecipitation, using rat ventricular lysates. NBCe1 coimmunoprecipitated with anti-CAIX antibody, indicating NBCe1 and CAIX interaction in the myocardium. Glutathione-S-transferase (GST) pull-down assays with predicted extracellular loops (EC) of NBCe1 revealed that NBCe1-EC4 mediated interaction with CAIX. Functional NBCe1/CAIX interaction was examined using fluorescence measurements of BCECF in rat cardiomyocytes to monitor cytosolic pH. NBCe1 transport activity was evaluated after membrane depolarization with high extracellular K(+) in the presence or absence of the CA inhibitors, benzolamide (BZ; 100 μM) or 6-ethoxyzolamide (ETZ; 100 μM) (*P < 0.05). This depolarization protocol produced an intracellular pH (pH(i)) increase of 0.17 ± 0.01 (n = 11), which was inhibited by BZ (0.11 ± 0.02; n = 7) or ETZ (0.06 ± 0.01; n = 6). NBCe1 activity was also measured by changes of pH(i) in NBCe1-transfected human embryonic kidney 293 cells subjected to acid loads. Cotransfection of CAIX with NBCe1 increased the rate of pH(i) recovery (in mM/min) by about fourfold (12.1 ± 0.8; n = 9) compared with cells expressing NBCe1 alone (3.1 ± 0.5; n = 7), which was inhibited by BZ (7.5 ± 0.3; n = 9). We demonstrated that CAIX forms a complex with EC4 of NBCe1, which activates NBCe1-mediated HCO(3)(-) influx in the myocardium. CAIX and NBCe1 have been linked to tumorigenesis and cardiac cell growth, respectively. Thus inhibition of CA activity might be useful to prevent activation of NBCe1 under these pathological conditions.  相似文献   

9.
We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1–7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 – pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.  相似文献   

10.
11.
Heavy chain antibodies differ in structure to conventional antibodies lacking both the light chain and the first heavy chain constant domain (CH1). Characteristics of the antigen-binding variable heavy domain of the heavy chain antibody (VHH) including the smaller size, high solubility and stability make them an attractive alternative to more traditional antibody fragments for detailed NMR-based structural analysis. Here we report essentially complete backbone and side chain 15N, 13C and 1H assignments for a free VHH. Analysis of the backbone chemical shift data obtained indicates that the VHH is comprised predominantly of β-sheets corresponding to nearly 60 % of the protein backbone.  相似文献   

12.
DNA methylation is a key epigenetic modification of DNA that is catalyzed by DNA methyltransferases (Dnmt). Increasing evidences suggest that DNA methylation in neurons regulates synaptic plasticity as well as neuronal network activity. In the present study, we investigated the changes in DNA methyltransferases 1 (Dnmt1) immunoreactivity and its protein levels in the gerbil hippocampal CA1 region after 5 min of transient global cerebral ischemia. CA1 pyramidal neurons were well stained with NeuN (a neuron-specific soluble nuclear antigen) antibody in the sham-group, Four days after ischemia–reperfusion (I–R), NeuN-positive (+) cells were significantly decreased in the stratum pyramidale (SP) of the CA1 region, and many Fluro-Jade B (a marker for neuronal degeneration)+ cells were observed in the SP. Dnmt1 immunoreactivity was well detected in all the layers of the sham-group. Dnmt1 immunoreactivity was hardly detected only in the stratum pyramidale of the CA1 region from 4 days post-ischemia; however, at these times, Dnmt1 immunoreactivity was newly expressed in GABAergic interneurons or astrocytes in the ischemic CA1 region. In addition, the level of Dnmt1 was lowest at 4 days post-ischemia. In brief, both the Dnmt1 immunoreactivity and protein levels were distinctively decreased in the ischemic CA1 region 4 days after transient cerebral ischemia. These results indicate that the decrease of Dnmt1 expression at 4 days post-ischemia may be related to ischemia-induced delayed neuronal death.  相似文献   

13.
羊驼体内存在天然缺少轻链的重链抗体,克隆重链抗体可变区(VHH),即可构建单域抗体(single-domain antibodies,sdAbs),又称纳米抗体(nanobody,Nb)。利用非免疫羊驼噬菌体文库筛选肿瘤特异性蛋白B7-H4的纳米抗体,经过4轮淘选,ELASE鉴定阳性克隆噬菌体,测序获得其DNA序列后体外转录为mRNA,将修饰纯化后的mRNA转染到肿瘤细胞,利用细胞免疫荧光检测mRNA在肿瘤细胞内是否表达,Western印迹进一步验证其表达情况;通过CCK-8法鉴定其对肿瘤细胞的增殖抑制能力;划痕实验鉴定其对肿瘤细胞迁移能力的影响;Transwell法鉴定其对肿瘤细胞的侵袭能力的影响;裸鼠荷瘤模型瘤旁注射mRNA,鉴定其在体内实验对肿瘤组织的作用。结果显示,通过淘选获得1个高亲和性的噬菌体株菌H6;DNA测序并导出的氨基酸序列符合羊驼纳米抗体结构;将其mRNA导入肿瘤细胞,能有效表达出纳米抗体H6;转染H6-mRNA的肿瘤细胞(0.84±0.08)与未转染H6-mRNA的对照组(1.83±0.04)相比,其增殖能力明显受到抑制,P<0.01,其迁移和侵袭能力(78.60±5.36)明显低于空白对照组(197.80±21.04),效果优于B7-H4 mRNA的siRNA(95.40±16.56);在裸鼠乳腺癌模型中能有效抑制肿瘤生长,效果优于紫杉醇和B7-H4 mRNA的siRNA。这说明筛选所得抗B7-H4纳米抗体H6能特异结合B7-H4蛋白并封闭其功能,导致肿瘤细胞的增殖、迁移和侵袭受到抑制。该结果为利用B7-H4作为治疗癌症的靶点提供了实验基础。  相似文献   

14.
Carbonic anhydrase IX (CAIX) is a membrane-bound, tumor-related enzyme whose expression is often considered a marker for hypoxia, an indicator of poor prognosis in the majority of cancer patients, and is associated with acidification of the tumor microenvironment. Here, we describe for the first time the catalytic properties of native CAIX in MDA-MB-231 breast cancer cells that exhibit hypoxia-inducible CAIX expression. Using (18)O exchange measured by membrane inlet mass spectrometry, we determined catalytic activity in membrane ghosts and intact cells. Exofacial carbonic anhydrase activity increases with exposure to hypoxia, an activity which is suppressed by impermeant sulfonamide CA inhibitors. Inhibition by sulfonamide inhibitors is not sensitive to reoxygenation. CAIX activity in intact cells increases in response to reduced pH. Data from membrane ghosts show that the increase in activity at reduced pH is largely due to an increase in the dehydration reaction. In addition, the kinetic constants of CAIX in membrane ghosts are very similar to our previous measurements for purified, recombinant, truncated forms. Hence, the activity of CAIX is not affected by the proteoglycan extension or membrane environment. These activities were measured at a total concentration for all CO(2) species at 25 mm and close to chemical equilibrium, conditions which approximate the physiological extracellular environment. Our data suggest that CAIX is particularly well suited to maintain the extracellular pH at a value that favors the survival fitness of tumor cells.  相似文献   

15.
Llama variable heavy-chain antibody fragment (VHH) fused to four different reader proteins was produced and secreted in culture medium by Aspergillus oryzae. These fusion proteins consisted of N-terminal reader proteins, VHH, and a C-terminal his-tag sequence which facilitated purification using one-step his-tag affinity chromatography. SDS-PAGE analysis of the deglycosylated purified fusion proteins confirmed that the molecular weight of each corresponded to the expected sum of VHH and the respective reader proteins. The apparent high molecular weight reader protein glucoamylase (GlaB) was found to be suitable for efficient VHH production. The GlaB-VHH-His protein bound its antigen, human chorionic gonadotropin, and was detectable by a new ELISA-based method using a coupled assay with glucoamylase, glucose oxidase, peroxidase, maltose, and 3,3′,5,5′-tetramethylbenzidine as substrates. Addition of potassium phosphate to the culture medium induced secretion of 0.61 mg GlaB-VHH-His protein/ml culture medium in 5 days.  相似文献   

16.
Non-steroidal anti-inflammatory drugs (NSAIDs) are known to induce apoptosis in a variety of cancer cells. However, the precise mechanisms by which NSAIDs facilitate apoptosis in tumor cells are not clear. In the present study, we show that niflumic acid (NA), a member of the fenamates group of NSAIDs and Cl? and Ca2+-activated Cl? (CAC) channels blocker, induced apoptosis (by ~8 %, 24 h treatment) and potentiated (by 8–10 %) apoptotic effect of endoplasmic reticulum Ca2+ mobilizer thapsigargin (Tg) in human erythroleukemic K562 cell line. The whole-cell patch clamp and Fluo-3 flow cytometric experiments confirmed an inhibitory effect of NA (100 and 300 µM) on store-operated (SOC) channels. We also found that NA-blocked CAC channels were activated by acute application of Tg (2 µM) in K562 cells. NA blockage of CAC channels was accompanied by activation of Ca2+-activated K+ (SK4) channels. The observed effects of NA were not connected with COX-2 inhibition since 100-nM NA (IC50 for COX-2 inhibition) did not induce either apoptosis or affect the channels activity. We conclude that inhibition of SOC channels plays a major role in NA-induced apoptosis. Increased apoptotic levels in Tg-treated K562 cells in the presence of NA may be due to the blockage of CAC and stimulation of SK4 channels in addition to SOC channels inhibition.  相似文献   

17.
目的:构建原核表达系统,制备靶向前列腺特异性膜抗原(prostate-specific membrane antigen,PSMA)多价纳米抗体并初步评价其生物学活性。方法:Bglbrick法构建多价纳米抗体表达载体,转化至大肠杆菌表达并利用亲和层析法纯化。联合蛋白质电泳和Western blot验证纯化产物,BCA法检测表达量。通过免疫荧光和流式细胞术定性评估PSMA特异性亲和能力,细胞ELISA法定量检测PSMA亲和水平,流式细胞术检测内吞效率。结果:成功构建靶向PSMA单价、二价、三价和四价纳米抗体大肠杆菌表达菌株。发酵结果表明四种纳米抗体均能在摇瓶水平实现高效可溶表达,其中二价纳米抗体表达量最高[(259.14±23.56) mg/L],单价纳米抗体表达量最低[(100.58±6.27) mg/L]。亲和实验结果证实四种纳米抗体均能特异性识别并结合PSMA阳性肿瘤细胞,与单价纳米抗体相比,二价、三价和四价纳米抗体对PSMA亲和能力分别提高了3.32倍、2.29倍和2.03倍。最后的内吞实验显示四种纳米抗体均能被PSMA阳性肿瘤细胞高效摄取,30 min内的摄取率均在80%以上。结论:靶向PSMA的多价纳米抗体,尤其是二价纳米抗体,具有比单价纳米抗体更高的产量和亲和水平,且具备不亚于单价纳米抗体的内吞效率,是未来基于PSMA肿瘤诊疗试剂开发的重要候选。  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as an anticancer protein with tumor-selective apoptotic activity, has been examined for use in clinical application. Melittin, an antibacterial peptide isolated from the bee Apis mellifera, has shown strong cytotoxicity to both tumor and normal cells. To ameliorate the cytotoxicity of melittin on cells and enhance the activity of TRAIL on cancer cells, we constructed a novel fusion protein, sTRAIL–melittin, containing a small ubiquitin-related modifier (SUMO) tag and expressed this fusion protein in Escherichia coli. Data showed that expression of the soluble fusion protein with the SUMO tag was approximately 85 % of total target protein which was much higher than that without the SUMO tag (approximately 10 %); sTRAIL–melittin was easily purified using Ni-NTA affinity chromatography and the tag was removed easily using SUMO-specific protease. To assay anticancer activity and side effects, methyl thiazolyl tetrazolium, hemolytic, and apoptosis assays were employed. Results demonstrated that sTRAIL–melittin had cytotoxic and apoptotic activity in K562 leukemia cells and HepG2 liver carcinoma cells, while it had only a minimal effect on erythrocytes and normal HEK293 cells. This indicates that the cytotoxicity of sTRAIL–melittin in normal cells was low and the anticancer activity of the fusion protein in tumor cells was significantly enhanced compared with sTRAIL (P?<?0.01). Furthermore, we found that sTRAIL–melittin also showed antibacterial activity to Staphylococcus aureus due to the presence of the melittin domain. Therefore, TRAIL fused with an antibacterial peptide may be a promising novel TRAIL-based anticancer treatment strategy.  相似文献   

19.
20.
Carbonic anhydrase IX (CAIX) is an emerging drug target for hypoxia associated cancers. To identify potent and selective inhibitors of CAIX, a small library of ferulic acid (FA) derivatives bearing triazole moiety has been designed, synthesized and evaluated against different human CA isoforms (CAII, CAVA & CAIX). Though most of the compounds showed CAIX inhibition in the micromolar range, compound 7i selectively inhibits CAIX in the nanomolar range (IC50 = 24 nM). In silico analysis revealed binding of 7i with the catalytically important amino acid residues of CAIX. Further, cell-based studies indicate that 7i inhibits the activity of CAIX, decreases the epithelial to mesenchymal transitions, induces apoptosis, inhibits cell migration and colonization potential of cancer cells. Taken together, these results emphasized the use of 7i as a prospective pharmacological lead molecule in CAIX targeted anticancer therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号