首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ginsenosides Re and Rg1 were transformed by recombinant β-glucosidase (Bgp1) to ginsenosides Rg2 and Rh1, respectively. The bgp1 gene consists of 2,496?bp encoding 831 amino acids which have homology to the glycosyl hydrolase families 3 protein domain. Using 0.1?mg enzyme ml(-1) in 20?mM sodium phosphate buffer at 37°C and pH 7.0, the glucose moiety attached to the C-20 position of ginsenosides Re and Rg1, was removed: 1?mg ginsenoside Re ml(-1) was transformed into 0.83?mg Rg2?ml(-1) (100% molar conversion) after 2.5?h and 1?mg ginsenoside Rg1?ml(-1) was transformed into 0.6?mg ginsenoside Rh1?ml(-1) (78% molar conversion) in 15?min. Using Bgp1 enzyme, almost all initial ginsenosides Re and Rg1 were converted completely to ginsenosides Rg2 and Rh1. This is the first report of the conversion of ginsenoside Re to ginsenoside Rg2 and ginsenoside Rg1 to ginsenoside Rh1 using the recombinant β-glucosidase.  相似文献   

2.
This study focused on the cloning, expression, and characterization of ginsenoside-transforming recombinant β-glucosidase from Actinosynnema mirum KACC 20028T in order to biotransform ginsenosides efficiently. The gene, termed as bglAm, encoding a β-glucosidase (BglAm) belonging to the glycoside hydrolase family 3 was cloned. bglAm consisted of 1,830 bp (609 amino acid residues) with a predicted molecular mass of 65,277 Da. This enzyme was overexpressed in Escherichia coli BL21(DE3) using a GST-fused pGEX 4T-1 vector system. The recombinant BglAm was purified with a GST·bind agarose resin and characterized. The optimum conditions of the recombinant BglAm were pH 7.0 and 37 °C. BglAm could hydrolyze the outer and inner glucose moieties at the C3 and C20 of the protopanaxadiol-type ginsenosides (i.e., Rb1 and Rd, gypenoside XVII) to produce protopanaxadiol via gypenoside LXXV, F2, and Rh2(S) with various pathways. BglAm can effectively transform the ginsenoside Rb1 to gypenoside XVII and Rd to F2; the K m values of Rb1 and Rd were 0.69?±?0.06 and 0.45?±?0.02 mM, respectively, and the V max values were 16.13?±?0.29 and 51.56?±?1.35 μmol min?1 mg?1 of protein, respectively. Furthermore, BglAm could convert the protopanaxatriol-type ginsenoside Re and Rg1 into Rg2(S) and Rh1(S) hydrolyzing the attached glucose moiety at the C6 and C20 positions, respectively. These various ginsenoside-hydrolyzing pathways of BglAm may assist in producing the minor ginsenosides from abundant major ginsenosides.  相似文献   

3.
Over the past several decades, the pharmacological effects of ginsenosides in Panax ginseng roots have been extensively investigated. Here, we developed a method for producing specific ginsenosides (F1 and F2) with good yields (F1:162 mg/g, F2:305 mg/g) using ??-glycosidase purified from Aspergillus niger. In addition, each ginsenoside (at least 25 species) was separated and purified by high performance liquid chromatography (HPLC) using five different types of solvents and different purification steps. In addition, the Rg3:Rh2 mixture (1:1, w/w) was shown to inhibit a specific lung cancer cell line (NCI-H232) in vivo, displaying an anticancer effect at a dose lower than achieved using treatments with single Rg3 or Rh2. This finding suggests that the combination of ginsenosides for targeting anticancer is more effective than the use of a single ginsenoside from ginseng or red ginseng.  相似文献   

4.
5.
Commercial β-galactosidase from Aspergillus oryzae (SUMILACT LTM) was used for the bioconversion of the ginsenosides Rb1, Rb2, Rc, Rd, and Rg3 to gypenoside-XVII, compound-O, compound-MC1, F2, and Rh2, respectively. The optimal conditions were pH 4.5, 50?°C, 60?U·mL?1 enzyme, and 8.0?mM substrate. Interestingly, the enzyme hydrolyzed only the outer β-(1,2)-d-glucose linkage at the C-3 position of ginsenosides. Under optimum conditions, the enzyme completely converted Rb1, Rb2, Rc, Rd, and Rg3 to gypenoside-XVII, compound-O, compound-MC1, F2, and Rh2, respectively, with the highest productivity.  相似文献   

6.
Ginsenosides are the major pharmacological components in ginseng. We isolated lactic acid bacteria from Kimchi to identify microbial modifications of ginsenosides. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain DCY65-1 belongs to the genus Lactobacillus and is most closely related to Lactobacillus brevis. On the basis of TLC and HPLC analysis, we found two metabolic pathways: F1 → 6α,12β-dihydroxydammar-3-one-20(S)-O-β-d-glucopyranoside and C–K → 12β-hydroxydammar-3-one-20(S)-O-β-d-glucopyranoside. These results suggest that strain DCY65-1 is capable of potent ketonic decarboxylation, ketonizing the hydroxyl group at C-3. The F1 metabolite had a more potent inhibitory effect on mushroom tyrosinase than did the substrate. Therefore, the F1 and C–K derivatives may be more pharmacologically active compounds, which should be further characterized.  相似文献   

7.
Many studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC(50)) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC(50) is Rb3 - Rb1Rc>Re>Rh1>R1>Rg2>Rb3. Rg3, Rd and Rh2, however, act as synergistic prooxidants in the above experimental system. Rg1 does not show any synergistic antioxidative property. Although the antioxidative and prooxidative mechanism of various ginsenosides with or without TOH in AAPH-induced hemolysis of human erythrocytes will be further studied in detail, this information may be useful in the clinical usage of ginsenosides.  相似文献   

8.
Many studies have focused on the free-radical-initiated peroxidation of membrane lipid, which is associated with a variety of pathological events. Panax ginseng is used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides, the major active components in P. ginseng, on the lipid metabolism, immune function and cardiovascular system. The results, however, are usually contradictory since the usage of mixture of ginsenosides cannot identify the function of every individual ginsenosides on the experimental system. On the other hand, every individual ginsenosides is not compared under the same experimental condition. These facts motivate us to evaluate the antioxidant effect of various individual ginsenosides on the experimental system of free-radical-initiated peroxidation: the hemolysis of human erythrocyte induced thermally by water-soluble initiator, 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH). The inhibitory concentration of 50% inhibition (IC50) of AAPH-induced hemolysis of the erythrocyte has been studied firstly and found that the order of IC50 is Rb3∼Rb1≪Rg2<Re<Rg1∼Rc<Rh1<R1. Rb1, Rc and Rg2, as antioxidants, can prolong the lag time of hemolysis. Contrarily, Rg3, Rd and Rh1, together with high concentration of Rb3, Rg1 and Rh2, function as prooxidants to accelerate AAPH-induced hemolysis. The addition of Re does not influence the lag time of hemolysis. The R1 with the concentration ranging from 10 to 20 μM decreases the lag time of hemolysis. These results suggest that there is a mutual interaction that existed in the molecule of ginsenosides since the difference of the structure of ginsenosides is only due to the connective position and type of sugar moieties to the ring of a triterpene dammarane. Moreover, the synergistic antioxidative properties of various individual ginsenosides with α-tocopherol (TOH) are also discussed, and it was found that the order of synergistic antioxidative properties with TOH is Rb1>Rc>Re>Rh1>R1>Rg2>Rb3. Rg3, Rd and Rh2, however, act as synergistic prooxidants in the above experimental system. Rg1 does not show any synergistic antioxidative property. Although the antioxidative and prooxidative mechanism of various ginsenosides with or without TOH in AAPH-induced hemolysis of human erythrocytes will be further studied in detail, this information may be useful in the clinical usage of ginsenosides.  相似文献   

9.
The hydrolytic activity of a recombinant β-glycosidase from Dictyoglomus turgidum that specifically hydrolyzed the xylose at the C-6 position and the glucose in protopanaxatriol (PPT)-type ginsenosides followed the order Rf > Rg1 > Re > R1 > Rh1 > R2. The production of aglycone protopanaxatriol (APPT) from ginsenoside Rf was optimal at pH 6.0, 80 °C, 1 mg ml?1 Rf, and 10.6 U ml?1 enzyme. Under these conditions, D. turgidum β-glycosidase converted ginsenoside R1 to APPT with a molar conversion yield of 75.6 % and a productivity of 15 mg l?1 h?1 after 24 h by the transformation pathway of R1 → R2 → Rh1 → APPT, whereas the complete conversion of ginsenosides Rf and Rg1 to APPT was achieved with a productivity of 1,515 mg l?1 h?1 after 6.6 h by the pathways of Rf → Rh1 → APPT and Rg1 → Rh1 → APPT, respectively. In addition, D. turgidum β-glycosidase produced 0.54 mg ml?1 APPT from 2.29 mg ml?1 PPT-type ginsenosides of Panax ginseng root extract after 24 h, with a molar conversion yield of 43.2 % and a productivity of 23 mg l?1 h?1, and 0.62 mg ml?1 APPT from 1.35 mg ml?1 PPT-type ginsenosides of Panax notoginseng root extract after 20 h, with a molar conversion yield of 81.2 % and a productivity of 31 mg l?1 h?1. This is the first report on the APPT production from ginseng root extract. Moreover, the concentrations, yields, and productivities of APPT achieved in the present study are the highest reported to date.  相似文献   

10.
β-Glucosidase from Thermus thermophilus has specific hydrolytic activity for the outer glucose at the C-20 position in protopanaxadiol-type ginsenosides without hydrolysis of the inner glucose. The hydrolytic activity of the enzyme for gypenoside XVII was optimal at pH 6.5 and 90 °C, with a half-life of 1 h with 3 g enzyme l?1 and 4 g gypenoside XVII l?1. Under the optimized conditions, the enzyme converted the substrate gypenoside XVII to ginsenoside F2 with a molar yield of 100 % and a productivity of 4 g l?1 h?1. The conversion yield and productivity of ginsenoside F2 are the highest reported thus far among enzymatic transformations.  相似文献   

11.
The focus of this study was the cloning, expression, and characterization of recombinant ginsenoside hydrolyzing β-glucosidase from Arthrobacter chlorophenolicus with an ultimate objective to more efficiently bio-transform ginsenosides. The gene bglAch, consisting of 1,260 bp (419 amino acid residues) was cloned and the recombinant enzyme, overexpressed in Escherichia coli BL21 (DE3), was characterized. The GST-fused BglAch was purified using GST·Bind agarose resin and characterized. Under optimal conditions (pH 6.0 and 37°C) BglAch hydrolyzed the outer glucose and arabinopyranose moieties of ginsenosides Rb1 and Rb2 at the C20 position of the aglycone into ginsenoside Rd. This was followed by hydrolysis into F2 of the outer glucose moiety of ginsenoside Rd at the C3 position of the aglycone. Additionally, BglAch more slowly transformed Rc to F2 via C-Mc1 (compared to hydrolysis of Rb1 or Rb2). These results indicate that the recombinant BglAch could be useful for the production of ginsenoside F2 for use in the pharmaceutical and cosmetic industries.  相似文献   

12.
Lee GW  Kim KR  Oh DK 《Biotechnology letters》2012,34(9):1679-1686
Optimal hydrolytic activity of β-glucosidase from Dictyoglomus turgidum for the ginsenoside Rd was at pH 5.5 and 80?°C, with a half-life of ~11?h. The enzyme hydrolysed β-linked, but not α-linked, sugar moieties of ginsenosides. It produced the rare ginsenosides, aglycon protopanaxadiol (APPD), compounds Y, and Mc, via three unique transformation pathways: Rb(1)?→?Rd?→?F(2)?→?compound K?→?APPD, Rb(2)?→?compound Y, and Rc?→?compound Mc. The enzyme converted 0.5?mM Rb(2) and 0.5?mM Rc to 0.5?mM compound Y and 0.5?mM compound Mc after 3?h, respectively, with molar conversion yields of 100?%.  相似文献   

13.
Glucagon-like peptide-1 (GLP-1) released from intestinal L cells in response to nutrients has many physiological effects but particularly enhances glucose-dependent insulin release through the GLP-1 receptor (GLP-1R). GLP-1 7–36 amide, the predominant circulating active form of GLP-1, is rapidly truncated by dipeptidyl peptidase-4 to GLP-1 9–36 amide, which is generally considered inactive. Given its physiological roles, the GLP-1R is targeted for treatment of type 2 diabetes. Recently ‘compound 2’ has been described as both an agonist and positive allosteric modulator of GLP-1 7–36 amide affinity, but not potency, at the GLP-1R. Importantly, we demonstrated previously that exendin 9–39, generally considered a GLP-1R antagonist, enhances compound 2 efficacy (or vice versa) at the GLP-1R. Given that GLP-1 9–36 amide is the major circulating form of GLP-1 post-prandially and is a low affinity weak partial agonist or antagonist at the GLP-1R, we investigated interaction between this metabolite and compound 2 in a cell line with recombinant expression of the human GLP-1R and the rat insulinoma cell line, INS-1E, with native expression of the GLP-1R. We show compound 2 markedly enhances efficacy and potency of GLP-1 9–36 amide for key cellular responses including AMP generation, Ca2+ signaling and extracellular signal-regulated kinase. Thus, metabolites of peptide hormones including GLP-1 that are often considered inactive may provide a means of manipulating key aspects of receptor function and a novel therapeutic strategy.  相似文献   

14.
A thin, profusely branched, fast growing hairy root line of Panax quinquefolium (American ginseng) was established by co-culturing epicotyl explants with a wild type strain of Agrobacterium rhizogenes. The transformed roots grew by over 10-fold from the initial inoculum within 8 weeks. The crude ginsenosides content in the roots was about 0.2 g/g dry wt level up to the 10th week of culture. Ginsenosides Rb2, Rd, Re, Rf and Rg1 constituted 47–49% of the crude saponin fraction between 6 and 8 weeks of growth whereas, Rc ginsenoside was accumulated only after 9th weeks when the biomass started receding. PCR amplification analysis of the hairy roots confirmed their transgenic nature by showing the presence of Ri-TL DNA with rolA, rolB and rolC genes in their genome.  相似文献   

15.

Purpose

Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88) in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.

Methods

An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT) mice reduced heart rate (HR) and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/-) mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV) in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR) in a randomized crossover study design.

Results

HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P< 0.001 for all outcomes). Administration of atenolol (2.5 mg/kg) reduced the HR and increased HRV (P< 0.05, respectively) in the wild type but not in the CD88-/- mice. There was no shift of the sympathovagal balance post-atenolol in either strains of mice (P> 0.05), except for the reduced LF/HF (Lower frequency/High frequency) ratio (P< 0.05) at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001) but the HRV of CD88-/- mice were significantly increased (P< 0.05), compared with WT mice.

Conclusion

Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.  相似文献   

16.
Is the IS1-flanked r-determinant of the R plasmid NR1 a transposon?   总被引:6,自引:0,他引:6  
The 23 kilobase multiple drug resistance r-determinant (r-det) of the R plasmid NR1 is an IS1-mediated transposon, Tn2671. Drug-resistant Escherichia coli transductants isolated after infection with bacteriophage P1::Tn2671 derivatives carry the intact r-det in their chromosomes. Independently isolated transductants carry the r-det at different locations on the chromosome. From the E. coli chromosome, Tn2671 can transpose to various locations on the phage P7 genome. Throughout these processes, r-det is maintained as a stable unit. Various possible molecular mechanisms, which all might contribute with characteristic frequencies to the transposition of Tn2671, are discussed. The results presented are relevant to the understanding of mechanisms for a wide spreading of drug resistance genes.  相似文献   

17.
18.
The low-resolution structure and overall dimensions of the A(3)B(3)CDF complex of the A(1) ATPase from Methanosarcina mazei G?1 in solution is analyzed by synchrotron X-ray small-angle scattering. The radius of gyration and the maximum size of the complex are 5.03 +/- 0.1 and 18.0 +/- 0.1 nm, respectively. The low-resolution shape of the protein determined by two independent ab initio approaches has a knob-and-stalk-like feature. Its headpiece is approximately 9.4 nm long and 9.2 nm wide. The stalk, which is known to connect the headpiece to its membrane-bound A(O) part, is approximately 8.4 nm long. Limited tryptic digestion of the A(3)B(3)CDF complex was used to probe the topology of the smaller subunits (C-F). Trypsin was found to cleave subunit C most rapidly at three sites, Lys(20), Lys(21), and Arg(209), followed by subunit F. In the A(3)B(3)CDF complex, subunit D remained protected from proteolysis.  相似文献   

19.
A soluble fragment of the high-affinity IgE receptor FcεRI α-chain (sFcεRIα) binds to the Fc fragment of IgE (IgE-Fc) as a 1:1 complex. IgE-Fc consists of a dimer of the Cε2, Cε3 and Cε4 domains of the ε-heavy chain of IgE. This region of IgE has been modelled on the crystal structure of the Fc region of IgG1, which exhibits twofold rotational symmetry. This implies that IgE should be divalent with respect to its ligands. X-ray scattering studies reveal however that the twofold rotational symmetry of IgE-Fc is perturbed by a bend in the linker region between the Cε2 and Cε3 domains. The 1:1 stoichiometry could then arise from the conformational asymmetry or from steric occlusion of one of the sites by the overhanging Cε2 domains. To test this hypothesis we have expressed a recombinant ε-chain fragment containing Cε3 and Cε4. This product, Fcε3–4, is secreted from cells as a disulphide linked dimer and binds with higher affinity than either IgE or IgE-Fc to cell surface FcεRI. Titration experiments, together with molecular mass measurements of the Fcε3–4/sFcεRIα complex, reveal that Fcε3–4 binds only a single receptor molecule. This excludes the possibility that steric hindrance by Cε2 accounts for the unexpected stoichiometry. Received: 31 July 1996 / Accepted: 1 December 1996  相似文献   

20.
The heterotrimeric laminins are a defining component of basement membranes and essential for tissue formation and function in all animals. The three short arms of the cross-shaped laminin molecule are composed of one chain each and their tips mediate the formation of a polymeric network. The structural basis for laminin polymerisation is unknown. We have determined crystal structures of the short-arm tips of the mouse laminin β1 and γ1 chains, which are grossly similar to the previously determined structure of the corresponding α5 chain region. The short-arm tips consist of a laminin N-terminal (LN) domain that is attached like the head of a flower to a rod-like stem formed by tandem laminin-type epidermal growth factor-like (LE) domains. The LN domain is a β-sandwich with elaborate loop regions that differ between chains. The γ1 LN domain uniquely contains a calcium binding site. The LE domains have little regular structure and are stabilised by cysteines that are disulphide-linked 1-3, 2-4, 5-6 and 7-8 in all chains. The LN surface is not conserved across the α, β and γ chains, but within each chain subfamily there is a striking concentration of conserved residues on one face of the β-sandwich, while the opposite face invariably is shielded by glycans. We propose that the extensive conserved patches on the β and γ LN domains mediate the binding of these two chains to each other, and that the α chain LN domain subsequently binds to the composite β-γ surface. Mutations in the laminin β2 LN domain causing Pierson syndrome are likely to impair the folding of the β2 chain or its ability to form network interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号