首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
In order to maximize protein identification by peptide mass fingerprinting noise peaks must be removed from spectra and recalibration is often required. The preprocessing of the spectra before database searching is essential but is time-consuming. Nevertheless, the optimal database search parameters often vary over a batch of samples. For high-throughput protein identification, these factors should be set automatically, with no or little human intervention. In the present work automated batch filtering and recalibration using a statistical filter is described. The filter is combined with multiple data searches that are performed automatically. We show that, using several hundred protein digests, protein identification rates could be more than doubled, compared to standard database searching. Furthermore, automated large-scale in-gel digestion of proteins with endoproteinase LysC, and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis, followed by subsequent trypsin digestion and MALDI-TOF analysis were performed. Several proteins could be identified only after digestion with one of the enzymes, and some less significant protein identifications were confirmed after digestion with the other enzyme. The results indicate that identification of especially small and low-abundance proteins could be significantly improved after sequential digestions with two enzymes.  相似文献   

2.
Tryptic digestion of proteins continues to be a workhorse of proteomics. Traditional tryptic digestion requires several hours to generate an adequate protein digest. A number of enhanced accelerated digestion protocols have been developed in recent years. Nonetheless, a need still exists for new digestion strategies that meet the demands of proteomics for high-throughput and rapid detection and identification of proteins. We performed an evaluation of direct tryptic digestion of proteins on a MALDI target plate and the potential for integrating RP HPLC separation of protein with on-target tryptic digestion in order to achieve a rapid and effective identification of proteins in complex biological samples. To this end, we used a Tempo HPLC/MALDI target plate deposition hybrid instrument (ABI). The technique was evaluated using a number of soluble and membrane proteins and an MRC5 cell lysate. We demonstrated that direct deposition of proteins on a MALDI target plate after reverse-phase HPLC separation and subsequent tryptic digestion of the proteins on the target followed by MALDI TOF/TOF analysis provided substantial data (intact protein mass, peptide mass and peptide fragment mass) that allowed a rapid and unambiguous identification of proteins. The rapid protein separation and direct deposition of fractions on a MALDI target plate provided by the RP HPLC combined with off-line interfacing with the MALDI MS is a unique platform for rapid protein identification with improved sequence coverage. This simple and robust approach significantly reduces the sample handling and potential loss in large-scale proteomics experiments. This approach allows combination of peptide mass fingerprinting (PMF), MS/MS peptide fragment fingerprinting (PPF) and whole protein MS for both protein identification and structural analysis of proteins.  相似文献   

3.
Chen Q  Liu T  Chen G 《Current Genomics》2011,12(6):380-390
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysis approaches for digesting and identifying proteins. The subjects covered include microwave-accelerated protein digestion, infrared-assisted proteolysis, ultraviolet-enhanced protein digestion, laser-assisted proteolysis, and future prospects. It is expected that these novel proteolysis strategies accelerated by various electromagnetic waves will become powerful tools in proteome research and will find wide applications in high throughput protein digestion and identification.  相似文献   

4.
Immune complexome analysis is a method for identifying and profiling of antigens in circulating immune complexes (CICs); it involves separation of immune complexes from serum, direct tryptic digestion of these complexes, and protein analysis via nano-liquid chromatography–tandem mass spectrometry (nano-LC–MS/MS). To improve this method, we initially investigated the effects of two factors—the gradient elution program and nano-LC column type (C18-packed, C8-packed, or packed spray capillary column)—on the numbers of peptides and proteins identified. Longer gradient elution times resulted in higher identification capability throughout the range of 25–400 min. Moreover, the packed spray capillary column supported identification of more peptides and proteins than did any other column. In addition, microwave-assisted digestion was compared with conventional digestion, which involved incubation overnight at 37 °C. Microwave-assisted digestion produced more partially digested peptides than did conventional digestion. However, the percentages of miscleaved peptides in all of the identified peptides in microwave-assisted digestion of immune complexes (a protein mixture) were lower than those in the physical stimulation-assisted digestion of a model protein. Microwave-assisted digestion is slightly inferior to, or as effective as, conventional digestion, but it drastically reduces the digestion time.  相似文献   

5.
A new application of microwave technology to proteomics   总被引:4,自引:0,他引:4  
Juan HF  Chang SC  Huang HC  Chen ST 《Proteomics》2005,5(4):840-842
Two-dimensional electrophoresis (2-DE) combined with mass spectrometry has significantly improved the possibilities of large-scale identification of proteins. However, 2-DE is limited by its inability to speed up the in-gel digestion process. We have developed a new approach to speed up the protein identification process utilizing microwave technology. Proteins excised from gels are subjected to in-gel digestion with endoprotease trypsin by microwave irradiation, which rapidly produces peptide fragments. The peptide fragments were further analyzed by matrix-assisted laser desorption/ionization technique for protein identification. The efficacy of this technique for protein mapping was demonstrated by the mass spectral analyses of the peptide fragmentation of several proteins, including lysozyme, albumin, conalbumin, and ribonuclease A. The method reduced the required time for in-gel digestion of proteins from 16 hours to as little as five minutes. This new application of microwave technology to protein identification will be an important advancement in biotechnology and proteome research.  相似文献   

6.
Most current methods for purification and identification of protein complexes use endogenous expression of affinity-tagged bait, tandem affinity tag purification of protein complexes followed by specific elution of complexes from beads, and gel separation and in-gel digestion prior to mass spectrometric analysis of protein interactors. We propose a single affinity tag in vitro pull-down assay with denaturing elution, trypsin digestion in organic solvent, and LC-ESI MS/MS protein identification using SEQUEST analysis. Our method is simple and easy to scale-up and automate, making it suitable for high-throughput mapping of protein interaction networks and functional proteomics.  相似文献   

7.
The combinations of gel electrophoresis or LC and mass spectrometry are two popular approaches for large scale protein identification. However, the throughput of both approaches is limited by the speed of the protein digestion process. Present research into fast protein enzymatic digestion has been focused mainly on known proteins, and it is unclear whether these results can be extrapolated to complex protein mixtures. In this study microwave technology was used to develop a fast protein preparation and enzymatic digestion method for protein mixtures. The protein mixtures in solution or in gel were prepared and digested by microwave-assisted protein enzymatic digestion, which rapidly produces peptide fragments. The peptide fragments were further analyzed by capillary LC and ESI-ion trap-MS or MALDI-TOF-MS. The technique was optimized using bovine serum albumin and then applied to human urinary proteins and yeast lysate. The method enabled preparation and digestion of protein mixtures in solution (human urinary proteins) or in gel (yeast lysate) in 6 or 25 min, respectively. Equivalent (in-solution) or better (in-gel) digestion efficiency was obtained using microwave-assisted protein enzymatic digestion compared with the standard overnight digestion method. This new application of microwave technology to protein mixture preparation and enzymatic digestion will hasten the application of proteomic techniques to biological and clinical research.  相似文献   

8.
The combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), in-gel enzymatic digestion of proteins separated by two-dimensional gel electrophoresis and searches of molecular weight in peptide-mass databases is a powerful and well established method for protein identification in proteomics analysis. For successful protein identification by MALDI-TOF mass spectrometry of peptide mixtures, critical parameters include highly specific enzymatic cleavage, high mass accuracy and sufficient numbers and sequence coverage of the peptides which can be analyzed. For in-gel digestion with trypsin, the method employed should be compatible both with enzymatic cleavage and subsequent MALDI-TOF MS analysis. We report here an improved method for preparation of peptides for MALDI-TOF MS mass fingerprinting by using volatile solubilizing agents during the in-gel digestion procedure. Our study clearly demonstrates that modification of the in-gel digestion protocols by addition of dimethyl formamide (DMF) or a mixture of DMF/N,N-dimethyl acetamide at various concentrations can significantly increase the recovery of peptides. These higher yields of peptides resulted in more effective protein identification.  相似文献   

9.
考马斯亮蓝染色双向电泳凝胶胶内酶切方法的改进   总被引:19,自引:0,他引:19  
介绍一种简便高效的从考马斯亮蓝染色的双向电泳凝胶切取蛋白质点,通过胶内酶切制备基质辅助激光解吸电离飞行时间质谱(MALDI—TOF-MS)样品的方法。该方法操作简便,样品的质谱鉴定结果经网上数据库检索检出率可高达80%以上,适于我国目前小规模蛋白质组学研究的国情,便于推广应用。  相似文献   

10.
Urea solution is one of the most commonly employed protein denaturants for protease digestion in proteomic studies. However, it has long been recognized that urea solution can cause carbamylation at the N termini of proteins/peptides and at the side chain amino groups of lysine and arginine residues. Protein/peptide carbamylation blocks protease digestion and affects protein identification and quantification in mass spectrometry analysis by blocking peptide amino groups from isotopic/isobaric labeling and changing peptide charge states, retention times, and masses. In addition, protein carbamylation during sample preparation makes it difficult to study in vivo protein carbamylation. In this study, we compared the peptide carbamylation in urea solutions of different buffers and found that ammonium-containing buffers were the most effective buffers to inhibit protein carbamylation in urea solution. The possible mechanism of carbamylation inhibition by ammonium-containing buffers is discussed, and a revised procedure for the protease digestion of proteins in urea and ammonium-containing buffers was developed to facilitate its application in proteomic research.  相似文献   

11.
A procedure has been developed for protein identification using mass spectrometry (MS) that incorporates sample cleanup, preconcentration, and protein digestion in a single-stage system. The procedure involves the adsorption of a protein, or protein mixture, from solution onto a hydrophobic resin that is contained within a microcolumn. Sample loading is accomplished by flowing the protein solution through the microcolumn, where the protein adsorbs to the hydrophobic surface. The protein is digested while still bound to the hydrophobic surface by flowing a buffered trypsin solution through the column bed. The peptide fragments are subsequently eluted for detection by MALDI or ESI-MS. The procedure is demonstrated using dilute protein samples containing high concentrations of salt, urea, and modest amount of sodium dodecyl sulfate relative to protein. Peptide fragments are also detected by MS from a 500 nM bacteriorhodopsin solution digested in a microcolumn. In this case, a combined cyanogen bromide/trypsin digestion was performed in-column. The procedure is applied to the MALDI-MS/MS identification of proteins present in an individual fraction collected by ion exchange HPLC separation of E. coli total cell extract. An additional application is illustrated in the analysis of a human plasma fraction. A total of 14 proteins, which were present in the sample at sub-micromolar concentrations, were identified from ESI-MS/MS. The microcolumn digestion procedure represents the next step toward a system for fully automated protein analysis through capture and digestion of the adsorbed protein on hydrophobic surfaces.  相似文献   

12.
Proteomic workflows involving liquid-based protein separations are an alternative to gel-based protein analysis, however the trypsin digestion procedure is usually difficult to implement, particularly when processing low abundance proteins from capillary column effluent. To convert the protein to peptides for the purpose of identification, current protocols require several sample handling steps, and sample losses become an issue. In this study, we present an improved system that conducts reversed-phase protein chromatography and rapid on-line tryptic digestion requiring sub-nanogram quantities of protein. This system employs a novel mirror-gradient concept that allows for dynamic titration of the column effluent to create optimal conditions for real-time tryptic digestion. The purpose behind this development was to improve the limits of detection of the online concept, to support flow-based alternatives to gel-based proteomics and to simplify the characterization of low abundance proteins. Using test mixtures of proteins, we show that peptide mass fingerprinting with high sequence representation can be easily achieved at the 20 fmol level, with detection limits down to 5 fmol (85 pg myoglobin). Limits of identification using standard data-dependent MS/MS experiments are as low as 10 fmol. These results suggest that the nanoLC-trypsin-MS/MS system could represent an alternative to the conventional "1D-gel to MS" proteomic strategy.  相似文献   

13.
The identification of proteins separated on two-dimensional gels is most commonly performed by trypsin digestion and subsequent matrix-assisted laser desorption ionization (MALDI) with time-of-flight (TOF). Recently, atmospheric pressure (AP) MALDI coupled to an ion trap (IT) has emerged as a convenient method to obtain tandem mass spectra (MS/MS) from samples on MALDI target plates. In the present work, we investigated the feasibility of using the two methodologies in line as a standard method for protein identification. In this setup, the high mass accuracy MALDI-TOF spectra are used to calibrate the peptide precursor masses in the lower mass accuracy AP-MALDI-IT MS/MS spectra. Several software tools were developed to automate the analysis process. Two sets of MALDI samples, consisting of 142 and 421 gel spots, respectively, were analyzed in a highly automated manner. In the first set, the protein identification rate increased from 61% for MALDI-TOF only to 85% for MALDI-TOF combined with AP-MALDI-IT. In the second data set the increase in protein identification rate was from 44% to 58%. AP-MALDI-IT MS/MS spectra were in general less effective than the MALDI-TOF spectra for protein identification, but the combination of the two methods clearly enhanced the confidence in protein identification.  相似文献   

14.
The core prerequisites for an efficient proteome-scale analysis of mammalian membrane proteins are effective isolation, solubilization, digestion and multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS). This protocol is for analysis of the mammalian membrane proteome that relies on solubilization and tryptic digestion of membrane proteins in a buffer containing 60% (vol/vol) methanol. Tryptic digestion is followed by strong cation exchange (SCX) chromatography and reversed phase (RP) chromatography coupled online with MS/MS for protein identification. The use of a methanol-based buffer eliminates the need for reagents that interfere with chromatographic resolution and ionization of the peptides (e.g., detergents, chaotropes, inorganic salts). Sample losses are minimized because solubilization and digestion are carried out in a single tube avoiding any sample transfer or buffer exchange between these steps. This protocol is compatible with stable isotope labeling at the protein and peptide level, enabling identification and quantitation of integral membrane proteins. The entire procedure--beginning with isolated membrane fraction and finishing with MS data acquisition--takes 4-5 d.  相似文献   

15.
Finehout EJ  Cantor JR  Lee KH 《Proteomics》2005,5(9):2319-2321
Prior to analysis by mass spectrometry, protein samples are often digested. Maximizing the peptide yield from digestion can increase the number of peptides detected and the confidence in protein identification. To determine the optimal conditions for digestion, the Michaelis-Menten kinetic parameters for Promega sequencing grade modified trypsin were measured over a range of temperatures and pHs. The results indicate that an increase in digestion temperature above 37 degrees C, the temperature traditionally used in digestion methods, could offer an increase in peptides detected.  相似文献   

16.
ProteinChip array technology enables protein purification, protein profiling, and biomarker discovery on a convenient biochip platform. Traditional proteomic approaches towards protein identification rely upon the generation of peptides through the use of specific proteases. However, for a variety of reasons, the digestion of proteins bound to planar arrays by specific proteases, such as trypsin, has proven to be difficult, at times providing little or no protein digestion at all. Additionally, should more than one protein be present on the array surface, the digestion product consists of peptides from different proteins, adding another dimension of complexity to database mining approaches. These factors have driven our group to explore alternative means of on-chip protein digestion. In this article, we describe an approach to generate peptide maps by limited acid hydrolysis. Depending upon the adsorbed protein, this method requires between 500 femtomole to 5 picomole of protein for on-chip hydrolysis. Besides generating several internal peptide fragments, limited acid hydrolysis also has the advantage of generating peptide ladders from the N- or C-terminus of the protein. From these ladders, partial primary sequence of the protein can be directly derived when analyzed by a simple laser desorption/ionization mass spectrometer. Furthermore, tandem mass spectrometry can be performed on several internal peptide fragments, thus facilitating the identification of several proteins within a mixture. Based upon the preliminary results of this work, we continue to explore the possibility of using limited acid hydrolysis to identify unknown proteins captured on ProteinChip array surfaces.  相似文献   

17.
An optimization and comparison of trypsin digestion strategies for peptide/protein identifications by microLC-MS/MS with or without MS compatible detergents in mixed organic-aqueous and aqueous systems was carried out in this study. We determine that adding MS-compatible detergents to proteolytic digestion protocols dramatically increases peptide and protein identifications in complex protein mixtures by shotgun proteomics. Protein solubilization and proteolytic efficiency are increased by including MS-compatible detergents in trypsin digestion buffers. A modified trypsin digestion protocol incorporating the MS compatible detergents consistently identifies over 300 proteins from 5 microg of pancreatic cell lysates and generates a greater number of peptide identifications than trypsin digestion with urea when using LC-MS/MS. Furthermore, over 700 proteins were identified by merging protein identifications from trypsin digestion with three different MS-compatible detergents. We also observe that the use of mixed aqueous and organic solvent systems can influence protein identifications in combinations with different MS-compatible detergents. Peptide mixtures generated from different MS-compatible detergents and buffer combinations show a significant difference in hydrophobicity. Our results show that protein digestion schemes incorporating MS-compatible detergents generate quantitative as well as qualitative changes in observed peptide identifications, which lead to increased protein identifications overall and potentially increased identification of low-abundance proteins.  相似文献   

18.
Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.  相似文献   

19.
An online nonenzymatic digestion method utilizing a microwave-heated flow cell and mild acid hydrolysis at aspartic acid (D) for rapid protein identification is described. This methodology, here termed microwave D-cleavage, was tested with proteins ranging in size from 5 kDa (insulin) to 67 kDa (bovine serum albumin) and a bacterial cell lysate ( Escherichia coli). A microwave flow cell consisting of a 5 microL total volume reaction loop connected to a sealed reaction vessel was introduced into a research grade microwave oven. With this dynamic arrangement, the injected sample was subjected to microwave radiation as it flowed through the reaction loop and was digested in less than 5 min. Different digestion times can be achieved by varying the sample flow rate and/or length of the loop inside the microwave flow cell. The microwave flow cell can be operated individually with the output being collected for matrix assisted laser ionization/desorption (MALDI) mass spectrometry (MS) or connected online for liquid chromatography (LC) electrospray ionization (ESI)-MS. In the latter configuration, the microwave flow cell eluates containing digestion products were transferred online to a reversed phase liquid chromatography column for direct ESI-MS and ESI-MS/MS analyses (specifically, Collision Induced Dissociation, CID). Concurrently with the microwave D-cleavage step, disulfide bond reduction/cleavage was achieved by the coinjection of dithiothreitol (DTT) with the sample prior to online microwave heating and online LC-MS analysis and so eliminating the need for alkylation of the reduced protein. All protein standards, protein mixtures, and proteins in a bacterial cell lysate analyzed by this new online methodology were successfully identified via a SEQUEST database search of fragment ion mass spectra. Overall, online protein digestion and identification was achieved in less than 40 min total analysis time, including the chromatographic step.  相似文献   

20.
A new method for on-plate protein digestion and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry analysis is proposed involving an automated one-step sample separation using nanoflow HPLC followed by nanoliter fraction collection and on-plate digestion with trypsin. This procedure uses a commercial automatic nanoliter fraction collection system for on-line spotting of the eluent onto a MALDI target. After protein digestion, the reaction is stopped by the addition of acidified matrix using the same automated system. Collected spots are subsequently analyzed using a MALDI tandem time-of-flight (TOF/TOF) mass spectrometer for protein sequencing and identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号