首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 19-hydroxyprostaglandins (19-OH-PGs) were tested in vivo on the rabbit oviduct and uterus and on the rhesus monkey (Macaca mulatta) uterus. The 19-OH-PGEs suppressed spontaneous oviductal and uterine activity in the rabbit. The qualitative effect on the rabbit oviduct of 19-OH-PGEs was similar to that of PGE2. However, the typical response of the rabbit uterus to PGE2 was an increase in muscle activity. With regard to the rabbit oviduct, 19(R)-OH-PGE2 was as potent as PGE2, but 19(S)-OH-PGE2 was approximately 1/2 as potent as PGE2. Based on the dose of 19-OH-PGEs usually required to cause a minimal suppression and the dose of PGE2 required to cause a minimal stimulation of rabbit uterine activity, 19(R)-OH-PGE2 was twice as potent as PGE2 while 19(S)-OH-PGE2 was 1/2 as potent as PGE2. Stimulatory effects on the rabbit oviduct and uterus were observed following administration of 19-OH-PGFs and PGF2alpha. The potency on the rabbit oviduct of 19(S)-OH-PGF2alpha was about 1/5 to 1/10 that of PGF2alpha; the potency of 19(R)-OH-PGF2alpha was about 1/10 to 1/20 that of PGF2alpha. Both 19-OH-PGFs were approximately 1/5 to 1/10 as potent as PGF2alpha on the rabbit uterus. At the doses tested 19-OH-PGFs were inactive on the monkey uterus. Thus, these compounds are at least 1/5 as active as PGF2alpha. In contrast, 19(R)-OH-PGE2 had approximately the same potency as PGE2 in stimulating monkey uterine activity; but 19(S)-OH-PGE2 was approximately 1/3 as potent as PGE2.  相似文献   

2.
Human BST-2 (hBST-2) has been identified as a cellular antiviral factor that blocks the release of various enveloped viruses. Orthologues of BST-2 have been identified in several species, including human, monkeys, pig, mouse, cat and sheep. All have been reported to possess antiviral activity. Duplication of the BST-2 gene has been observed in sheep and the paralogues are referred to as ovine BST-2A and BST2-B, although only a single gene corresponding to BST-2 has been identified in most species. In this study, we identified three isoforms of bovine BST-2, named bBST-2A1, bBST-2A2 and bBST-2B, in bovine cells treated with type I interferon, but not in untreated cells. Both bBST-2A1 and bBST-2A2 are posttranslationally modified by N-linked glycosylation and a GPI-anchor as well as hBST-2, while bBST-2B has neither of these modifications. Exogenous expression of bBST-2A1 or bBST-2A2 markedly reduced the production of bovine leukemia virus and vesicular stomatitis virus from cells, while the antiviral activity of bBST-2B was much weaker than those of bBST-2A1 and bBST-2A2. Our data suggest that bBST-2A1 and bBST-2A2 function as part of IFN-induced innate immunity against virus infection. On the other hand, bBST-2B may have a different physiological function from bBST-2A1 and bBST-2A2.  相似文献   

3.
4.
The aggregation states of Escherichia coli phosphofructokinase 2 (Pfk-2) and of a mutant enzyme (Pfk-2*) altered in the inhibitory allosteric site for MgATP were measured in the presence and in the absence of substrates and products of the reaction. When sucrose gradient ultracentrifugation experiments were performed in the absence of added ligands, both enzymes sedimented as dimers. Likewise, at low concentrations of both substrates (0.1 mM) the aggregation state of Pfk-2 and Pfk-2* corresponded to a dimer. However, in the presence of 1 mM MgATP alone, Pfk-2 sedimented as a tetramer, whereas Pfk-2* sedimented as a dimer. At a low fructose 6-phosphate concentration (0.1 mM) and an inhibitory concentration of MgATP (4 mM), Pfk-2 sedimented as a tetramer. However, at the same MgATP concentration but at a higher fructose-6-P concentration (1 mM), a condition under which Pfk-2 is not inhibited by the Mg-nucleotide complex, the enzyme sedimented as a dimer. Pfk-2* is not inhibited under these conditions and sedimented as a dimer in each case. Thus, the effectiveness of MgATP in promoting the aggregation of Pfk-2 and Pfk-2* parallels the inhibitability of the enzymes by the nucleotide complex. However, ATP4-, a potent inhibitor of Pfk-2 and Pfk-2* that binds to the catalytic site of the enzymes, had no effect upon their aggregation states. Possibly Pfk-2* is not able to form a tetramer because of an alteration in the regulatory site for the Mg-nucleotide complex.  相似文献   

5.
6.
The conversion of [3H]estradiol to 2-hydroxyestradiol (2-OH-E2) by homogenates of porcine ovarian follicles was assayed in vitro in the presence and absence of 10 and 100 microM concentrations of the following potential substrates or inhibitors of estrogen-2/4-hydroxylase (E-2/4-H): (1) estrogens; estrone (E1), estriol (E3) and 17 alpha-estradiol (17 alpha-E2), (2) catecholestrogens; 2-hydroxyestradiol (2-OH-E2), 4-hydroxyestradiol (4-OH-E2) and 2-hydroxyestrone (2-OH-E1); (3) 2-methoxyestradiol (2-MeO-E2); (4) halogenated estrogens; 2-bromoestradiol, (2-Bromo-E2) 4-bromoestradiol and 2,4-dibromoestradiol; (5) androgens; testosterone (T), dihydrotestosterone (DHT) and androstenedione; (6) progesterone; (7) epinephrine; (8) inhibitors of steroid aromatase; aminoglutethimide and 4-hydroxyandrostenedione and (9) SKF 525A, an inhibitor of cytochrome P-450. Progesterone and 2-Bromo-E2 were the two most effective inhibitors (2-OH-E2 formation = 4 and 5% of control at 100 microM and 29.6 and 17.4% at 10 microM of progesterone and 2-Bromo-E2, respectively). 2-MeO-E2 at 100 microM was nearly as effective as progesterone in inhibiting E-2/4-H activity but only caused about 50% inhibition at 10 microM. The three catecholestrogens reduced 2-OH-E2 formation to about the same degree (21-23% of control at 100 microM). The 2,4-dibromo-E2 was equipotent with the catecholestrogens while 4-bromo-E2 was about half as effective. The phenolic estrogens, potential substrates for the enzyme, reduced 2-OH-E2 formation to different degrees, with E3 being the most effective. Among the androgens, DHT was almost as effective an inhibitor as the catecholestrogens, T was about half as effective while androstenedione had no effect. Epinephrine and the two inhibitors of aromatase did not inhibit E-2/4-H activity. SKF 525A inhibited E-2/4-H activity but with a potency only about 1/10th that reported for liver.  相似文献   

7.
Precursor administration experiments with 2H-labeled 6-oxocampestanol, 6-deoxocastasterone and 6alpha-hydroxycastasterone in cultured cells of Catharanthus roseus were performed and the metabolites were analyzed by GC-MS. [2H6]Cathasterone was identified as a metabolite of [2H6]6-oxocampestanol, whereas [2H6]6alpha-hydroxycastasterone and [2H6]castasterone were identified as metabolites of [2H6]6-deoxocastasterone, and [2H6]castasterone was identified as a metabolite of [2H6]6alpha-hydroxycastasterone, indicating that 6-deoxocastasterone is converted to castasterone via 6alpha-hydroxycastasterone. In addition, 6-deoxocathasterone, a putative biosynthetic intermediate in the late C6-oxidation pathway, was identified as an endogenous brassinosteroid. These studies provide further evidence supporting our proposed biosynthetic pathways for brassinolide.  相似文献   

8.
Toll-like receptor 4 and MD-2 form a receptor for lipopolysaccharide (LPS), a major constituent of Gram-negative bacteria. MD-2 is a 20-25-kDa extracellular glycoprotein that binds to Tolllike receptor 4 (TLR4) and LPS and is a critical part of the LPS receptor. Here we have shown that the level of MD-2 expression regulates TLR4 activation by LPS. Using site-directed mutagenesis, we have found that glycosylation has no effect on MD-2 function as a membrane receptor for LPS. We used alanine-scanning mutagenesis to identify regions of human MD-2 that are important for TLR4 and LPS binding. We found that mutation in the N-terminal 46 amino acids of MD-2 did not substantially diminish LPS activation of Chinese hamster ovary (CHO) cells co-transfected with TLR4 and mutant MD-2. The residues 46-50 were important for LPS activation but not LPS binding. The residues 79-83, 121-124, and 125-129 are identified as important in LPS activation but not surface expression of membrane MD-2. The function of soluble MD-2 is somewhat more sensitive to mutation than membrane MD-2. Our results suggest that the 46-50 and 127-131 regions of soluble MD-2 bind to TLR4. The region 79-120 is not involved in LPS binding but affects monomerization of soluble MD-2 as well as TLR4 binding. We define the LPS binding region of monomeric soluble MD-2 as a cluster of basic residues 125-131. Studies on both membrane and soluble MD-2 suggest that domains of MD-2 for TLR4 and LPS binding are separate as well as overlapping. By mapping these regions on a three-dimensional model, we show the likely binding regions of MD-2 to TLR4 and LPS.  相似文献   

9.
Pyruvate dehydrogenase (PDH), the first component of the human pyruvate dehydrogenase complex, has two isoenzymes, somatic cell-specific PDH1 and testis-specific PDH2 with 87% sequence identity in the alpha subunit of alpha(2) beta(2) PDH. The presence of functional testis-specific PDH2 is important for sperm cells generating nearly all their energy from carbohydrates via pyruvate oxidation. Kinetic and regulatory properties of recombinant human PDH2 and PDH1 were compared in this study. Site-specific phosphorylation/dephosphorylation of the three phosphorylation sites by four PDH kinases (PDK1-4) and two PDH phosphatases (PDP1-2) were investigated by substituting serines with alanine or glutamate in PDHs. PDH2 was found to be very similar to PDH1 as follows: (i) in specific activities and kinetic parameters as determined by the pyruvate dehydrogenase complex assay; (ii) in thermostability at 37 degrees C; (iii) in the mechanism of inactivation by phosphorylation of three sites; and (iv) in the phosphorylation of sites 1 and 2 by PDK3. In contrast, the differences for PDH2 were indicated as follows: (i) by a 2.4-fold increase in binding affinity for the PDH-binding domain of dihydrolipoamide acetyltransferase as measured by surface plasmon resonance; (ii) by possible involvement of Ser-264 (site 1) of PDH2 in catalysis as evident by its kinetic behavior; and (iii) by the lower activities of PDK1, PDK2, and PDK4 as well as PDP1 and PDP2 toward PDH2. These differences between PDH2 and PDH1 are less than expected from substitution of 47 amino acids in each PDH2 alpha subunit. The multiple substitutions may have compensated for any drastic alterations in PDH2 structure thereby preserving its kinetic and regulatory characteristics largely similar to that of PDH1.  相似文献   

10.
We have recently cloned a novel splice variant of cyclin D2 termed as cycD2SV. CycD2SV overexpression in several immortalized cell lines led to formation of ubiquitinated protein aggregates accompanied by a significant decrease in cell proliferation. Based on immuno co-localization and ultrastructural analysis experiments, cycD2SV protein aggregates were frequently found in various subcellular compartments such as endosomes, autophagosomes, lysosomes and the microtubule organizing centre. Secondary structure analysis revealed that the amino terminal α-helix in cycD2SV is not tightly packed with the cyclin box suggesting a misfolded conformation compared to other cyclins. Deletion analysis suggests that 1–53 amino acid region of cycD2SV may be required for protein aggregation and 54–136 amino acid region may mediate cell cycle inhibition. Based on co-immunoprecipitation experiments, we have shown that cycD2SV binds to cycD2 as well as CDK4. In addition, gene expression analysis demonstrated an upregulation in GADD45α and dynamin 2 mRNA levels in cycD2SV overexpressing cells. These two proteins are known to play critical roles in the DNA damage response and apoptosis pathways. TUNEL experiments were negative for apoptosis, however, cycD2SV expressing cells were more sensitive to cell death induced by external stressors such as trypsinization. Collectively our results suggest that cycD2SV mediates cell cycle inhibition by sequestering endogenous cell cycle proteins, such as cycD2 and CDK4, and possibly targeting them for ubiquitin mediated protein degradation.  相似文献   

11.
CK2 is a highly conserved protein serine/threonine kinase that is ubiquitously distributed in eukaryotes, constitutively active and has been implicated in multiple cellular functions, as well as in tumorigenesis and transformation. Elevated CK2 activity has been associated with the malignant transformation of several tissues and is associated with aggressive tumor behaviour. While the precise roles of CK2 in tumorigenesis remain incompletely understood, mounting evidence suggests a role for CK2 in the protection of cells from apoptosis via the regulation of tumor suppressor and oncogene activity. Consequently, CK2 has emerged as a potential therapeutic target, and strategies to inhibit CK2 have been ongoing in pre-clinical trials. This review will focus on published evidence highlighting the molecular mechanisms by which CK2 functions in the promotion of tumorigenesis, as well as review current strategies being used to inhibit CK2.  相似文献   

12.
In vitro addition of cadmium chloride (CdCl2) to a reaction mixture decreased the liver microsomal cytochrome P-450 level of the male guinea-pig. In contrast nickel chloride (NiCl2) did not cause any alteration in the cytochrome P-450 level. Neither CdCl2 nor NiCl2 produced any activity changes in the liver microsomal NADPH-cytochrome c reductase. When the liver microsomes were preincubated in the presence of CdCl2, metal-induced reduction increased as the time of preincubation progressed and attained its maximum reduction level at about 15 min. In the case of NiCl2, the maximal reduction level was attained at about 5 min. However, no changes were observed by metals in liver microsomal NADPH-cytochrome c reductase activity as the time of preincubation progressed. After preincubation, the reduction of cytochrome P-450 achieved by CdCl2 was stronger than that obtained by NiCl2 as well as than that obtained by CdCl2 without preincubation.  相似文献   

13.
Protein kinase CK2 is a multi-subunit complex whose dynamic assembly appears as a crucial point of regulation. The ability to interfere with specific protein-protein interactions has already provided powerful means of influencing the functions of selected proteins within the cell. CK2beta-derived cyclopeptides that target a well-defined hydrophobic pocket on CK2alpha have been previously characterized as potent inhibitors of CK2 subunit assembly [9]. As a first step toward the rational design of low molecular weight CK2 antagonists, we have in the present study screened a collection of podophyllotoxine indolo-analogues to identify chemical inhibitors of the CK2 subunit interaction. We report the identification of a podophyllotoxine indolo-analogue as a chemical ligand that binds to the CK2alpha/CK2beta interface inducing selective disruption of the CK2alpha/CK2beta assembly and concomitant inhibition of CK2alpha activity.  相似文献   

14.
Growing cultures of several strains of Pseudomonas fluorescens and Pseudomonas chlororaphis produced N2O as the only detectable gaseous product of denitrification, and other strains produced N2 as the gaseous end product of denitrification. All of the nitrogen in NO3- or NO2- added to cell suspensions of the N2O-producing strains P. fluorescens PJ 185 and P. chlororaphis B-560 was recovered as N2O. All of the nitrogen in NO3- or NO2- added to cell suspensions of the N2-producing strain P. fluorescens PJ70 was converted to N2. Cell extracts of P. fluorescens PJ 70, PJ 185, and P. chlororaphis B-560 exhibited NO3- reductase activity when sodium succinate was the electron donor. Reduced nicotinamide adenine dinucleotide and flavine adenine dinucleotide were required to demonstrate NO2- reductase activity in cell extracts.  相似文献   

15.
一株纤维素降解真菌的筛选、鉴定及酶学性质分析   总被引:11,自引:1,他引:10  
通过对富含枯枝败叶的土壤样品进行富集培养,利用刚果红纤维素培养基初筛和酶活测定复筛得到产纤维素酶的一株真菌,将其命名为GC2-2,并对该菌株进行鉴定及酶学性质研究。结果表明该菌株是一株耐高温、碱性纤维素酶的真菌GC2-2。通过18S rDNA分子克隆测定,该菌为球孢枝孢菌,其滤纸酶的活力优于CMC酶的活力。该菌所产酶的最适反应条件为温度35°C,最适pH值7.5。  相似文献   

16.
17.
The stimulating effect of copper addition on the reduction rate of nitrous oxide (N(2)O) to dinitrogen (N(2)) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 degrees C). N(2)O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the denitrification of nitrite in Fe(II)EDTA(2-)-containing medium and nitrate in Fe(II)EDTA(2-)-free medium. Sulfide was either dosed externally or generated from endogenous sulfur sources during anaerobic incubation of the sludge. In the presence of sulfide (from 15 microM to 1mM), heterotrophic denitrification using ethanol as electron donor was incomplete, i.e., N(2)O accumulated instead of N(2) or was transiently formed. Copper addition (60 microM) rapidly stimulated the reduction of N(2)O to N(2). Zinc addition (60 microM) did not have a similar strong stimulating effect as observed for copper and the N(2)O reduction rate was not stimulated at all upon supply of FeCl(3) (2 mM). Thus, a copper deficiency for N(2)O reduction is most likely developed in the presence of sulfide. It is suggested that sulfide induces this deficiency as it readily precipitates as copper sulfide and thus scavenges copper in the medium or that sulfide inactivates the N(2)OR reductase as it sequesters the copper of this metalloenzyme.  相似文献   

18.
19.
Finding effective treatments for cancer requires a thorough understanding of how it develops and progresses. Recent research has revealed the crucial role that Zinc and ring finger 2 (ZNRF2) play in the progression of non-small cell lung cancer (NSCLC) by controlling cell growth and death. However, a comprehensive analysis of ZNRF2's role in cancer as a whole has yet to be conducted. Our study sought to investigate the impact of ZNRF2 on diverse human tumours, as well as the molecular pathways involved, using databases such as TCGA (The Cancer Genome Atlas), GEO (Gene Expression Omnibus) and the Human Protein Atlas (HPA), as well as several bioinformatic tools. Our findings indicate that ZNRF2 is generally expressed at higher levels in tumours than in normal tissues, and in some cancers, its levels correlate positively with disease stage, potentially predicting a poor prognosis for patients. We also discovered genetic changes in ZNRF2 among cancer patients, as well as its relationship with cancer-related fibroblasts, endothelial cells and immune cell infiltration. Additionally, we explored potential molecular mechanisms of ZNRF2 in tumours, finding that it increases in hepatocellular carcinoma (HCC) tissues and that inhibiting its expression through ZNRF2 siRNA can limit HepG2 cell proliferation. Overall, our study provides a comprehensive overview of ZNRF2's oncogenic roles across various cancers.  相似文献   

20.
The cytosolic Ah receptor (AhR) heterocomplex consists of one molecule of the AhR, a 90-kDa heat shock protein (Hsp90) dimer, and one molecule of the hepatitis B virus X-associated protein 2 (XAP2). Serine residues 43,53,131-2, and 329 on XAP2-FLAG were identified as putative phosphorylation sites using site-directed mutagenesis followed by two-dimensional phosphopeptide mapping analysis. Protein kinase CK2 (CK2) was identified as the 45-kDa kinase from COS 1 cell or liver extracts that was responsible for phosphorylation of serine 43 in the XAP2 peptide 39-57. Loss of phosphorylation at any or all of the serine residues did not significantly affect the ability of XAP2-FLAG to bind to the murine AhR in rabbit reticulocyte lysate or Hsp90 in COS-1 cells. Furthermore, all of these serine mutants were able to sequester murine AhR-YFP into the cytoplasm as well as wild-type XAP2. YFP-XAP2 S53A was unable to enter the nucleus, indicating a potential role of phosphorylation in nuclear translocation of XAP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号