共查询到20条相似文献,搜索用时 0 毫秒
1.
Structure-activity of type I interferons 总被引:1,自引:0,他引:1
Giuseppe C. Viscomi 《Biotherapy》1997,10(1):59-86
Type I IFNs constitute a family of proteins exhibiting high homology in primary, secondary, and tertiary structures. They interact with the same receptor and transmit signals to cellular nucleus through a similar mechanism, eliciting roughly homogeneous biological activity. Nevertheless, the members of that family, IFNα species, IFNβ and IFNω, due to local differences in the structure sometime show distinct properties. From the reported data it results that even minute changes or differences in the primary sequences could be responsible for a significant variety of biological actions, thus inducing to the hypothesis that Type I IFNs, rather than to be the result of a redundant replication during the evolution, play definite roles in the defense of living organisms to foreign agents. 相似文献
2.
Type I interferons (IFNs) produced primarily by plasmacytoid dendritic cells (pDCs) as part of the innate immune response to infectious agents induce the maturation of myeloid DCs and enhance antigen presentation. Type I IFNs also enhance apoptosis of virus-infected cells, stimulate cross priming and enhanced presentation of viral peptides. Type I IFNs are powerful polyclonal B-cell activators that induce a strong primary humoral immune response characterized by isotype switching and protection against virus challenge. Type I IFNs stimulate an IgG2a antibody response characteristic of Th1 immunity when ad-mixed with influenza virus vaccine and injected intramuscurarly (i.m.) or administered intranasally. The adjuvant activity of type I IFNs has been shown to involve direct effects of IFN on B-cells, effects on T-cells, as well as effects on antigen presentation. Oromucosal administration of type I IFNs concomitantly with i.m. injection of vaccine alone can also enhance the antibody response to influenza vaccination by enhancing trafficking of antigen-presenting cells towards the site of vaccination. Recombinant IFNs are potent adjuvants that may find application in both parenterally and mucosally administered vaccines. 相似文献
3.
Immunomodulatory functions of type I interferons 总被引:1,自引:0,他引:1
Interferon-α (IFNα) and IFNβ, collectively known as type I IFNs, are the major effector cytokines of the host immune response against viral infections. However, the production of type I IFNs is also induced in response to bacterial ligands of innate immune receptors and/or bacterial infections, indicating a broader physiological role for these cytokines in host defence and homeostasis than was originally assumed. The main focus of this Review is the underappreciated immunomodulatory functions of type I IFNs in health and disease. We discuss their function in the regulation of innate and adaptive immune responses, the response to bacterial ligands, inflammasome activation, intestinal homeostasis and inflammatory and autoimmune diseases. 相似文献
4.
David M 《BioTechniques》2002,(Z1):58-65
The two classes of interferons, type I (IFNalpha, IFNbeta, IFNomega, and IFNtau) and type II (IFNgamma) are pleiotropic cytokines that exhibit antiviral, antiproliferative, and immunomodulatory effects on their target cells. This article summarizes the advances made in elucidating the molecular events that mediate the biological responses to type I interferons. 相似文献
5.
Human primary immunodeficiencies of type I interferons 总被引:4,自引:0,他引:4
Jouanguy E Zhang SY Chapgier A Sancho-Shimizu V Puel A Picard C Boisson-Dupuis S Abel L Casanova JL 《Biochimie》2007,89(6-7):878-883
Type I interferons (IFN-alpha/beta and related molecules) are essential for protective immunity to experimental infection by numerous viruses in the mouse model. In recent years, human primary immunodeficiencies affecting either the production of (UNC-93B deficiency) or the response to (STAT1 and TYK2 deficiencies) these IFNs have been reported. Affected patients are highly susceptible to certain viruses. Patients with STAT1 or TYK2 deficiency are susceptible to multiple viruses, including herpes simplex virus-1 (HSV-1), whereas UNC-93B-deficient patients present isolated HSV-1 encephalitis. However, these immunological defects are not limited to type I IFN-mediated immunity. Impaired type II IFN (IFN-gamma)-mediated immunity plays no more than a minor role in the pathogenesis of viral diseases in these patients, but the contribution of impaired type III IFN (IFN-lambda)-mediated immunity remains to be determined. These novel inherited disorders strongly suggest that type I IFN-mediated immunity is essential for protection against natural infections caused by several viruses in humans. 相似文献
6.
Few molecular therapeutic approaches have been so rigorously investigated in relation to the pathophysiology and outcome of human diseases as type I interferons. Historically, IFNs were discovered after the phenomenon of ‘interference’ was first described by Isaacs and Lindenmann in 1957, and for years IFNs (IFN) were considered as potential “antiviral penicillins” until the broader spectrum of effects upon normal cell physiology, the natural and adaptive immune systems, and tumor growth and proliferation were described. Interferon beta (IFNβ) was the second human gene after insulin to be cloned, and it codes for the first cytokine used to treat human malignancies. Despite the progress in understanding and treating cancer over the last 25 years, IFN alpha (IFN) remains the most commonly used biologically active cytokine in the treatment of solid tumors, and for some like melanoma, the only successful agent. In this review we discuss the role of type I interferons in the pathophysiology and treatment of melanoma, with emphasis on the 22 years of work conducted at the University of Pittsburgh. We discuss potential mechanisms that partially explain the clinical benefit, and set the groundwork for building upon, the design of more effective treatments for this disease. 相似文献
7.
8.
Meyers JA Mangini AJ Nagai T Roff CF Sehy D van Seventer GA van Seventer JM 《Cytokine》2006,35(5-6):235-246
Type I interferons (IFN) (IFN-alpha/beta) are recognized as both inhibitors and effectors of autoimmune disease. In multiple sclerosis, IFN-beta therapy appears beneficial, in part, due to its suppression of autoimmune inflammatory Th cell responses. In contrast, in systemic lupus erythematosus (SLE) triggering of plasmacytoid DC (pDC) Toll-like receptors (TLRs) by autoimmune complexes (autoICs) results in circulating type I IFN that appear to promote disease by driving autoantigen presentation and autoantibody production. To investigate how pDC-derived type I IFN might regulate Th cells in SLE, we examined a model in which sustained pDC stimulation by autoICs is mimicked by pretreating normal human PBMC with TLR9 agonist, CpG-A. Subsequently, PBMC Th cells are activated with superantigen, and APC are activated with CD40L. The role of CpG-A/TLR9-induced type I IFN in regulating PBMC is determined by blocking with virus-derived soluble type I IFN receptor, B18R. In summary, pretreatment with either rhIFN-alpha/beta or CpG-A inhibits PBMC secretion of superantigen-induced IFN-gamma and IL-17, and CD40L-induced IL-12p70 and IL-23. B18R prevents these effects. Data indicate that CpG-A-induced type I IFN inhibit IL-12p70-dependent PBMC IFN-gamma secretion by enhancing IL-10. Our results suggest that in SLE, circulating type I IFN may potentially act to inhibit inflammatory cytokine secretion. 相似文献
9.
W R Fleischmann N Ramarathinam E E Fields 《Journal of biological regulators and homeostatic agents》1990,4(3):107-116
The relative effects of treatment with an anticonvulsant, phenytoin, on the production of interferons were determined for both the murine and human systems. Phenytoin treatment was found to have differential effects on the in vitro production of Type I and Type II interferons. Phenytoin had either no effect (HuIFN-alpha) or an enhancing effect (MuIFN-alpha/beta) on the in vitro production of Type I interferons. In contrast, phenytoin pretreatment had an inhibitory effect on the in vitro production of Type II interferons (IFN-gamma) for both the murine and human systems. Phenytoin appeared to exert its inhibitory effect directly on the IFN-gamma-producing cell and was active even when added as late as 6 h after IFN-gamma induction. This inhibition was not related to a toxic effect of the phenytoin and occurred at phenytoin concentrations which were pharmacologically relevant (10-20 micrograms/ml). The effects of phenytoin on the in vivo production of MuIFN-gamma were also examined. In parallel to the in vitro observations, phenytoin treatment of mice significantly reduced the in vivo induction of MuIFN-gamma. The results raise the possibility that phenytoin therapy in humans may significantly affect the production of HuIFN-gamma. 相似文献
10.
Fabrizio Mattei Giovanna Schiavoni David F. Tough 《Cytokine & growth factor reviews》2010,21(4):227-236
Although initially identified and best characterized for their role in innate antiviral defence, type I interferons (IFN-I) are also known to have an important impact on the adaptive immune response. In part, this is linked to another long-recognised property of IFN-I, namely their ability to modify cellular proliferation and survival. Here, we review the influence of IFN-I on immune cell homeostasis, focusing on their effects on T cells and antigen-presenting cells. 相似文献
11.
Effects of type I interferons on Friend retrovirus infection 总被引:1,自引:0,他引:1
The type I interferon (IFN) response plays an important role in the control of many viral infections. However, since there is no rodent animal model for human immunodeficiency virus, the antiviral effect of IFN-alpha and IFN-beta in retroviral infections is not well characterized. In the current study we have used the Friend virus (FV) model to determine the activity of type I interferons against a murine retrovirus. After FV infection of mice, IFN-alpha and IFN-beta could be measured between 12 and 48 h in the serum. The important role of type I IFN in the early immune defense against FV became evident when mice deficient in IFN type I receptor (IFNAR(-/-)) or IFN-beta (IFN-beta(-/-)) were infected. The levels of FV infection in plasma and in spleen were higher in both strains of knockout mice than in C57BL/6 wild-type mice. This difference was induced by an antiviral effect of IFN-alpha and IFN-beta and was most likely mediated by antiviral enzymes as well as by an effect of these IFNs on T-cell responses. Interestingly, the lack of IFNAR and IFN-beta enhanced viral loads during acute and chronic FV infection. Exogenous IFN-alpha could be used therapeutically to reduce FV replication during acute but not chronic infection. These findings indicate that type I IFN plays an important role in the immediate antiviral defense against Friend retrovirus infection. 相似文献
12.
We have reviewed the experimental results which indicate that endogenous type I interferon (IFN) present either constitutively or possibly induced by the tumor plays an important role in limiting the development of transplantable tumors in mice. Thus, treatment with potent polyclonal neutralizing antibodies to IFN alpha/beta markedly enhanced the subcutaneous growth, invasiveness and metastases of xenogeneic tumor cells (uninfected or infected with RNA or DNA viruses) in athymic nude mice; enhanced the intraperitoneal transplantability of six different syngeneic murine tumors in three strains of immunocompetent mice; and completely abrogated the resistance of allogeneic C57Bl/6 (H-2(b)) or C3H (H-2(k)) mice to the multiplication of Friend erythroleukemia cells (H-2(d)) in the liver and spleen resulting in the death of most mice. The mechanisms by which mice respond to the injection of relatively few tumor cells appear to be multiple, to depend on the site of tumor growth, to occur early and prior to an immunologic response. Endogenous type I IFN appears to constitute an essential component of these defense mechanisms enabling the host to restrict tumor growth. 相似文献
13.
Activation of macrophages by bacterial lipopolysaccharide (LPS) is accompanied by the secretion of type I interferons (IFNs) which can act in an autocrine manner. We examined the role of type I IFNs in macrophage responses to LPS using bone marrow-derived macrophages (BMM) from IFNAR1-/- mice, which lack a component of the type I IFN receptor and do not respond to type I IFNs. We found that, unlike wild-type (WT) BMM, LPS-treated IFNAR1-/- cells failed to produce nitric oxide (NO), or express inducible NO synthase (iNOS), indicating that type I IFNs are essential for all LPS-stimulated NO production in BMM. Exogenously added type II IFN (IFNgamma) rescued these responses in LPS-treated IFNAR1-/- BMM. In contrast to effects on NO, type I IFNs negatively regulated respiratory burst activity in LPS-primed BMM. We also found that while type I IFNs mediated the anti-proliferative effects of lower concentrations of LPS, at higher concentrations LPS acted in a type I IFNs-independent manner. Finally, we report that type I IFNs are a survival factor for BMM. Despite this, the ability of LPS to also prevent apoptosis in BMM was independent of type I IFNs. These findings highlight the diverse roles of type I IFNs in mediating LPS-stimulated macrophage responses. 相似文献
14.
G Garotta K W Talmadge J R Pink B Dewald M Baggiolini 《Biochemical and biophysical research communications》1986,140(3):948-954
A three-day treatment with IFN-gamma enhanced up to 300% the capacity of human monocytes and macrophages to produce H2O2 during the respiratory burst. IFN-alpha or -beta (type I IFNs), which did not by themselves influence the burst, were found to antagonize the enhancing effect of IFN-gamma (type II IFN). The antagonism was concentration-dependent and required the presence of type I IFNs during the whole period of IFN-gamma pretreatment. These results suggest that the host defense function of mononuclear phagocytes may be controlled by the relative local concentrations of type I and type II IFNs. 相似文献
15.
Type I interferons (IFNs) are a family of cytokines involved in the defense against viral infections that play a key role in the activation of both the innate and adaptive immune system. IFNs both directly and indirectly enhance the capacity of B lymphocytes to respond to viral challenge and produce cytotoxic and neutralizing antibodies. However, prolonged type I IFN exposure is not always beneficial to the host. If not regulated properly IFN can drive autoantibody production as well as other parameters of systemic autoimmune disease. Type I IFNs impact B-cell function through a variety of mechanisms, including effects on receptor engagement, Toll-like receptor expression, cell migration, antigen presentation, cytokine responsiveness, cytokine production, survival, differentiation and class-switch recombination. Type I IFNs are also cytotoxic for a variety of cell types and thereby contribute to the accumulation of cell debris that serves as a potential source for autoantigens. Type I IFN engagement of a variety of accessory cells further promotes B-cell survival and activation, as exemplified by the capacity of type I IFNs to increase the level of B-cell survival factors, such as B lymphocyte stimulator, produced by dendritic cells. Therefore, it is not surprising that the loss of expression of the type I IFN receptor can have dramatic effects on the production of autoantibodies and on the clinical features of systemic autoimmune diseases such as systemic lupus erythematosus. 相似文献
16.
Marchisone C Benelli R Albini A Santi L Noonan DM 《The International journal of biological markers》1999,14(4):257-262
Kaposi's Sarcoma (KS) is a pathology which occurs with increased frequency and in a particularly aggressive form in AIDS patients. The HIV-1 Tat protein appears to be an important co-factor in the induction of the extensive neo-vascularization associated with AIDS-KS. Tat acts as a chemoattractant for endothelial cells in vitro, inducing both chemotactic and invasive responses. Several clinical trials have been performed testing the effectiveness of diverse biological agents in therapy of KS, among these the type I interferons. Type I IFNs have diverse biological functions besides their anti-viral activity, including anti-angiogenic properties. We have shown that IFN alpha and IFN beta are potent inhibitors of both primary and immortalized endothelial cell migration and morphogenesis in vitro as well as neo-angiogenesis induced by HIV-1 Tat in vivo. The inhibitory effect of IFN class I on HIV-Tat associated angiogenesis further supports its use as a therapy for epidemic Kaposi's sarcoma. The use of recombinant IFNs at the levels required to obtain a therapeutic effect are associated with side effects and toxicity, therefore we are now developing a gene therapy approach for constant and local delivery type I IFNs. 相似文献
17.
Vaithilingam Sekar Valerie J. Atmar Arati R. Joshi Mathilde Krim Glenn D. Kuehn 《Biochemical and biophysical research communications》1983,114(3):950-954
Dilution of human fibroblast GM2767 cell cultures into fresh serum-containing growth medium induces ornithine decarboxylase activity 45-fold over a six-hour interval. When the fibroblast cultures are supplemented with human fibroblast α-, β-, or γ-interferon at the time of dilution into fresh growth medium, the induction of ornithine decarboxylase is inhibited 61%, 90%, and 65%, respectively. β-Interferon is the most effective type of interferon to inhibit induction of ornithine decarboxylase. 相似文献
18.
Sriram U Biswas C Behrens EM Dinnall JA Shivers DK Monestier M Argon Y Gallucci S 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(10):6446-6455
Cytokines play an important role in modulating the development and function of dendritic cells (DCs). Type I IFNs activate DCs and drive anti-viral responses, whereas IL-4 is the prototype of a Th2 cytokine. Evidence suggests that type I IFNs and IL-4 influence each other to modulate DC functions. We found that two type I IFNs, IFN-alpha and IFN-beta, stimulated a similar costimulatory profile in myeloid resting DCs. IL-4 suppressed the response of myeloid DCs to both type I IFNs in vitro and in vivo by impairing the up-regulation of MHC and costimulatory molecules and the production of cytokines, such as IL-6 and IL-15, and anti-viral genes, such as Mx-1, upon type I IFN stimulation. In dissecting the mechanism underlying this inhibition, we characterized the positive feedback loop that is triggered by IFN-alpha in primary DCs and found that IL-4 inhibited the initial phosphorylation of STAT1 and STAT2 (the transducers of signaling downstream of IFN-alpha and -beta receptors (IFNARs)) and reduced the up-regulation of genes involved in the amplification of the IFN response such as IRF-7, STAT1, STAT2, IFN-beta, and the IFNARs in vitro and in vivo. Therefore, IL-4 renders myeloid DCs less responsive to paracrine type I IFNs and less potent in sustaining the autocrine positive loop that normally amplifies the effects of type I IFNs. This inhibition could explain the increased susceptibility to viral infections observed during Th2-inducing parasitoses. 相似文献
19.
Sellebjerg F Krakauer M Limborg S Hesse D Lund H Langkilde A Søndergaard HB Sørensen PS 《PloS one》2012,7(6):e35927
Although treatment of multiple sclerosis (MS) with the type I interferon (IFN) IFN-β lowers disease activity, the role of endogenous type I IFN in MS remains controversial. We studied CD4+ T cells and CD4+ T cell subsets, monocytes and dendritic cells by flow cytometry and analysed the relationship with endogenous type I IFN-like activity, the effect of IFN-β therapy, and clinical and magnetic resonance imaging (MRI) disease activity in MS patients. Endogenous type I IFN activity was associated with decreased expression of the integrin subunit CD49d (VLA-4) on CD4+CD26(high) T cells (Th1 helper cells), and this effect was associated with less MRI disease activity. IFN-β therapy reduced CD49d expression on CD4+CD26(high) T cells, and the percentage of CD4+CD26(high) T cells that were CD49d(high) correlated with clinical and MRI disease activity in patients treated with IFN-β. Treatment with IFN-β also increased the percentage of CD4+ T cells expressing CD71 and HLA-DR (activated T cells), and this was associated with an increased risk of clinical disease activity. In contrast, induction of CD71 and HLA-DR was not observed in untreated MS patients with evidence of endogenous type IFN I activity. In conclusion, the effects of IFN-β treatment and endogenous type I IFN activity on VLA-4 expression are similar and associated with control of disease activity. However, immune-activating effects of treatment with IFN-β may counteract the beneficial effects of treatment and cause an insufficient response to therapy. 相似文献
20.
Differential receptor subunit affinities of type I interferons govern differential signal activation
Type I interferons (IFNs) elicit antiviral, antiproliferative and immunmodulatory responses by binding to a shared cell surface receptor comprising the transmembrane proteins ifnar1 and ifnar2. Activation of differential response patterns by IFNs has been observed, suggesting that members of the family play different roles in innate immunity. The molecular basis for differential signaling has not been identified yet. Here, we have investigated the recognition of various IFNs including several human IFNalpha species, human IFNomega and human IFNbeta as well as ovine IFNtau2 by the receptor subunits in detail. Binding to the extracellular domains of ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-EC) was monitored in real time by reflectance interference and total internal reflection fluorescence spectroscopy. For all IFNs investigated, competitive 1:1 interaction not only with ifnar2-EC but also with ifnar1-EC was shown. Furthermore, ternary complex formation was studied with ifnar1-EC and ifnar2-EC tethered onto solid-supported membranes. These analyses confirmed that the signaling complexes recruited by IFNs have very similar architectures. However, differences in rate and affinity constants over several orders of magnitude were observed for both the interactions with ifnar1-EC and ifnar2-EC. These data were correlated with the potencies of ISGF3 activation, antiviral and anti-proliferative activity on 2fTGH cells. The ISGF3 formation and antiviral activity correlated very well with the binding affinity towards ifnar2. In contrast, the affinity towards ifnar1 played a key role for antiproliferative activity. A striking correlation was observed for relative binding affinities towards ifnar1 and ifnar2 with the differential antiproliferative potency. This correlation was confirmed by systematically engineering IFNalpha2 mutants with very high differential antiproliferative potency. 相似文献