首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: In vivo microdialysis was used to measure changes in extracellular concentrations of catecholamines and indoleamines in freely moving rats in response to administration of corticotropin-releasing factor (CRF). Dialysis probes were placed stereotaxically in either the medial hypothalamus or the medial prefrontal cortex. We used a repeated-measures design in which each rat received artificial CSF or one dose of CRF 3–4 h apart, and each subject was retested with the same treatments in the reverse order 5–7 days later. With the dialysis probe in the hypothalamus, intracerebroventricular administration of CRF (17 or 330 pmol) dose-dependently increased dialysate concentrations of norepinephrine (NE), dopamine (DA), and all their measurable catabolites except normetanephrine. The effects on NE were substantially greater than those on DA. Dialysate concentrations of serotonin could not be measured reliably, but those of its catabolite, 5-hydroxyindoleacetic acid, were also elevated. Concentrations of NE and DA were elevated within the first one or two (20 min) collection periods, with a peak response at ∼ 1–2 h. Dialysate concentrations of catecholamines and metabolites normally returned to baseline within 3 h. Similar data were obtained with dialysis probes in the medial prefrontal cortex after intracerebroventricular administration of 17 or 167 pmol of CRF, except that the increases in DA exceeded those of NE in this region. Intraperitoneal administration of CRF (1 nmol) similarly elevated dialysate concentrations of NE, DA, 5-hydroxyindoleacetic acid, and all catecholamine catabolites except normetanephrine in both medial hypothalamus and medial prefrontal cortex. These results support earlier neurochemical data suggesting that CRF administered both centrally and peripherally stimulates the release of both DA and NE in the brain.  相似文献   

2.
Abstract: Noradrenergic and dopaminergic projections converge in the medial prefrontal cortex and there is evidence of an interaction between dopamine (DA) and norepinephrine (NE) terminals in this region. We have examined the influence of drugs known to alter extracellular NE on extracellular NE and DA in medial prefrontal cortex using in vivo microdialysis. Local application of the NE uptake inhibitor desipramine (1.0 µM) delivered through a microdialysis probe increased extracellular DA (+149%) as well as NE (+201%) in medial prefrontal cortex. Furthermore, desipramine potentiated the tail shock-induced increase in both extracellular DA (stress alone, +64%; stress + desipramine, +584%) and NE (stress alone, +55%; stress + desipramine, +443%). In contrast, local application of desipramine did not affect extracellular DA in striatum, indicating that this drug does not influence DA efflux directly. Local application of the α2-adrenoceptor antagonist idazoxan (0.1 or 5.0 mM) increased extracellular NE and DA in medial prefrontal cortex. Conversely, the α2-adrenoceptor agonist clonidine (0.2 mg/kg; i.p.) decreased extracellular NE and DA in medial prefrontal cortex. These results support the hypothesis that NE terminals in medial prefrontal cortex regulate extracellular DA in this region. This regulation may be achieved by mechanisms involving an action of NE on receptors that regulate DA release (heteroreceptor regulation) and/or transport of DA into noradrenergic terminals (heterotransporter regulation).  相似文献   

3.
Abstract: The effect of various classes of excitatory amino acid agonists on the release of dopamine in the medial prefrontal cortex (PFC) of awake rats was examined using intracerebral microdialysis. Local infusion of 20 µ M α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), through the microdialysis probe, produced a significant increase of more than twofold in extracellular levels of dopamine. Application of 100 µ M AMPA increased these levels nearly 15 fold. The AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (50 µ M ) blocked the increase in dopamine release produced by 20 µ M AMPA. Local infusion of kainate at concentrations of 5 and 20 µ M increased dopamine release by nearly 150 and 500%, respectively. Local application of CNQX (50 µ M ) before 20 µ M kainate significantly attenuated the stimulatory effect of kainate on dopamine levels. In contrast to AMPA and kainate, infusion of N -methyl- d -aspartate (NMDA) at 20 or 100 µ M did not increase dopamine release. In fact, a trend toward a decrease in dopamine release was evident after 100 µ M NMDA. The present study indicates that the in vivo release of dopamine in the PFC is facilitated by AMPA and kainate receptors. This modulation is more profound than that previously reported in the basal ganglia. The lack of an excitatory effect of NMDA is in agreement with recent reports that the NMDA receptor may inhibit indirectly dopaminergic neurotransmission in the PFC.  相似文献   

4.
Abstract: Microdialysis was used to compare the effect of local perfusion of cocaine with that of functionally similar compounds on extracellular norepinephrine, dopamine, and serotonin (measured simultaneously) in the ventral tegmental area of freely moving rats. Tetrodotoxin (1 µ M ) potently inhibited both basal and cocaine-induced dialysate monoamine outputs. The local anesthetic lidocaine produced little or no effect on the monoamine output, whereas all uptake blockers tested (at 0.1–1,000 µ M ) increased the monoamine output in a dose-dependent manner. The selective norepinephrine-uptake blockers desipramine and nisoxetine did not show any selectivity for norepinephrine, whereas the selective serotonin-uptake blockers fluoxetine and citalopram, as well as the selective dopamine-uptake blocker GBR 12935, preferentially (but not exclusively) increased their target amine. Cocaine at low concentrations (1–10 µ M ) increased the three amines similarly, but at higher concentrations (100–1,000 µ M ) caused a relatively higher dopamine output. A positive relationship between blocker-induced dialysate norepinephrine and dopamine outputs suggests significant interactions between monoamine systems. The present results indicate that cocaine's action in the ventral tegmental area involves not only a dopamine-, but also a norepinephrine- and a serotonin-related component, and that cocaine-induced monoamine increase is independent of its local anesthetic property.  相似文献   

5.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

6.
Abstract: Previous research has shown that systemically administered antipsychotic drugs enhance dopamine release from the nigrostriatal and mesocortical dopamine pathways. However, the degree of enhancement differs as a function of the drug used (atypical versus typical antipsychotic) and the dopamine pathway examined. The present studies examined whether these differences result from differential actions of these drugs on dopamine terminal regions. Clozapine or haloperidol was infused locally into the caudate-putamen or prefrontal cortex through reverse microdialysis. Although both drugs increased extracellular dopamine levels, clozapine produced greater effects than haloperidol in the prefrontal cortex, whereas haloperidol produced greater effects in the caudate-putamen. These results suggest that neurochemical differences within dopamine terminal regions may explain the differential actions of antipsychotic drugs on striatal and cortical dopamine release.  相似文献   

7.
Abstract: Monoamine-uptake blockers were applied focally (0.1–1,000 µ M ) through a dialysis probe in the nucleus accumbens of freely moving rats, and the extracellular concentrations of dopamine, norepinephrine, and serotonin were measured. The selective dopamine-uptake blocker GBR 12935 increased dopamine preferentially with only a small effect on norepinephrine, whereas the selective serotonin-uptake blocker fluoxetine increased serotonin output preferentially. In contrast, the selective norepinephrine-uptake blockers desipramine and nisoxetine enhanced not only norepinephrine, but also serotonin and dopamine appreciably. Cocaine increased all three amines with the greatest effects on dopamine and serotonin. As in our previous study on the ventral tegmental area, there was a positive association between dopamine and norepinephrine output when all blocker data were taken together. The present results suggest a contribution of the increase in norepinephrine, but not serotonin, to the enhancement of dopamine after cocaine applied focally in the nucleus accumbens.  相似文献   

8.
目的观察戊巴比妥钠、水合氯醛、氨基甲酸乙酯三种麻醉药物对雌性SD大鼠血液学指标的影响。方法选用戊巴比妥钠(40mg/kg)、水合氯醛(400mg/kg)、氨基甲酸乙酯(1g/kg)腹腔注射麻醉雌性SD大鼠,麻醉20min后眼眶静脉丛取血测定大鼠血液细胞学指标及血液生化指标。结果三种不同药物麻醉雌性SD大鼠20min后,某些血液细胞学指标及血液生化指标与生理盐水对照组相比均有不同程度的差异。结论麻醉药物可对雌性SD大鼠的血液学指标产生影响。  相似文献   

9.
The effects of the dopaminergic agonist apomorphine (1 mg . kg-1 i.v.) upon local cerebral glucose utilization in 43 anatomically discrete regions of the CNS were examined in conscious, lightly restrained rats and in rats anesthetized with chloral hydrate by means of the quantitative autoradiographic [14C]2-deoxyglucose technique. In animals anesthetized with chloral hydrate, glucose utilization was reduced throughout all regions of the CNS from the levels observed in conscious animals, although the magnitude of the reductions in glucose use displayed considerable regional heterogeneity. With chloral hydrate anesthesia, the proportionately most marked reductions in glucose use (by 40-60% from conscious levels) were noted in primary auditory nuclei, thalmaic relay nuclei, and neocortex, and the least pronounced reductions in glucose use (by 15-25% from conscious levels) were observed in limbic areas, some motor relay nuclei, and white matter. In conscious, lightly restrained rats, the administration of apomorphine (1 mg . kg-1) effected significant increased in glucose utilization in 15 regions of the CNS (e.g., subthalamic nucleus, ventral thalamic nucleus, rostral neocortex, substantia nigra, pars reticulata), and significant reductions in glucose utilization in two regions of the CNS (lateral habenular nucleus and anterior cingulate cortex). In rats anesthetized with chloral hydrate, the effects of apomorphine upon local glucose utilization were less widespread and less marked than in conscious animals. In only two of the regions (the globus pallidus and septal nucleus), which displayed increased glucose use following apomorphine in conscious rats, were significant increases in local glucose utilization observed with this agent in chloral hydrate-anesthetized rats. In the pars compacta of the substantia nigra, in which apomorphine increased glucose utilization in conscious animals, significant reductions in glucose utilization were observed following apomorphine in rats anesthetized with chloral hydrate. The profound effects of chloral hydrate anesthesia upon local cerebral glucose use, and the modification by this anesthetic regime of the local metabolic responses to apomorphine, emphasize the difficulties which exists in the extrapolation of data from anesthetized animals to the conditions which prevail in the conscious animal.  相似文献   

10.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

11.
Abstract: Cocaethylene is a pharmacologically active metabolite resulting from concurrent cocaine and ethanol consumption. The effects of cocaine and cocaethylene on extracellular levels of dopamine in the nucleus accumbens, and serotonin in the striatum were characterized in vivo in the anesthetized rat. Both intravenous (3 μmol/kg) and intraperitoneal (44 μmol/kg) routes of administration were used. In addition to monitoring neurotransmitter levels, microdialysate levels of cocaine and cocaethylene were determined at 4-min intervals after intravenous administration, and at 20-min intervals after intraperitoneal administration. Extracellular levels of dopamine in the nucleus accumbens were increased to ∼400% of preinjection value by both cocaine and cocaethylene when administered intravenously. Cocaine caused a significant increase of striatal serotonin to 200% preinjection value, whereas cocaethylene had no effect. Brain levels of cocaine and cocaethylene after intravenous administration did not differ. After intraperitoneal administration, extracellular levels of dopamine in the nucleus accumbens were increased to 400% of preinjection levels by cocaine, but were only increased to 200% of preinjection levels by cocaethylene, the difference being statistically significant. Serotonin levels were increased to 360% of preinjection levels by cocaine, but only to 175% of preinjection value by cocaethylene. Levels of cocaine attained in brain were significantly higher than those for cocaethylene, suggesting pharmacokinetic differences with the intraperitoneal route. These results confirm in vivo that cocaethylene is more selective in its actions than cocaine with respect to dopamine and serotonin uptake. In addition, route-dependent differences in attainment of brain drug levels have been observed that may impact on interpretations of the relative potency of the reinforcement value of these compounds.  相似文献   

12.
Microdialysis was used to assess extracellular dopamine in striatum, nucleus accumbens, and medial frontal cortex of unanesthetized rats both under resting conditions and in response to intermittent tail-shock stress. The dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid also were measured. The resting extracellular concentration of dopamine was estimated to be approximately 10 nM in striatum, 11 nM in nucleus accumbens, and 3 nM in medial frontal cortex. In contrast, the resting extracellular levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid were in the low micromolar range. Intermittent tail-shock stress increased extracellular dopamine relative to baseline by 25% in striatum, 39% in nucleus accumbens, and 95% in medial frontal cortex. 3,4-Dihydroxyphenylacetic acid and homovanillic acid also were generally increased by stress, although there was a great deal of variability in these responses. These data provide direct in vivo evidence for the global activation of dopaminergic systems by stress and support the concept that there exist regional variations in the regulation of dopamine release.  相似文献   

13.
Abstract: Methylphenidate promotes a dose-dependent behavioral profile that is very comparable to that of amphetamine. Amphetamine increases extracellular norepinephrine and serotonin, in addition to its effects on dopamine, and these latter effects may play a role in the behavioral effects of amphetamine-like stimulants. To examine further the relative roles of dopamine, norepinephrine, and serotonin in the behavioral response to amphetamine-like stimulants, we assessed extracellular dopamine and serotonin in caudate putamen and norepinephrine in hippocampus in response to various doses of methylphenidate (10, 20, and 30 mg/kg) that produce stereotyped behaviors, and compared the results with those of a dose of amphetamine (2.5 mg/kg) that produces a level of stereotypies comparable to the intermediate dose of methylphenidate. The methylphenidate-induced changes in dopamine and its metabolites were consistent with changes induced by other uptake blockers, and the magnitude of the dopamine response for a behaviorally comparable dose was considerably less than that with amphetamine. Likewise, the dose-dependent increase in norepinephrine in response to methylphenidate was also significantly less than that with amphetamine. However, in contrast to amphetamine, methylphenidate had no effect on extracellular serotonin. These results do not support the hypothesis that a stimulant-induced increase in serotonin is necessary for the appearance of stereotyped behaviors.  相似文献   

14.
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex.  相似文献   

15.
Methylphenidate (MPD) is one of the most prescribed drugs for alleviating the symptoms of Attention Deficit/Hyperactivity Disorder (ADHD). However, changes in the molecular mechanisms related to MPD withdrawal and susceptibility to consumption of other psychostimulants in normal individuals or individuals with ADHD phenotype are not completely understood. The aims of the present study were: (i) to characterize the molecular differences in the prefrontal dopaminergic system of SHR and Wistar strains, (ii) to establish the neurochemical consequences of short- (24 hours) and long-term (10 days) MPD withdrawal after a subchronic treatment (30 days) with Ritalin® (Methylphenidate Hydrochloride; 2.5 mg/kg orally), (iii) to investigate the dopaminergic synaptic functionality after a cocaine challenge in adult MPD-withdrawn SHR and Wistar rats. Our results indicate that SHR rats present reduced [3H]-Dopamine uptake and cAMP accumulation in the prefrontal cortex (PFC) and are not responsive to dopaminergic stimuli in when compared to Wistar rats. After a 24-hour withdrawal of MPD, SHR did not present any alterations in [3H]-Dopamine Uptake, [3H]-SCH 23390 binding and cAMP production; nonetheless, after a 10-day MPD withdrawal, the results showed a significant increase of [3H]-Dopamine uptake, of the quantity of [3H]-SCH 23390 binding sites and of cAMP levels in these animals. Finally, SHR that underwent a 10-day MPD withdrawal and were challenged with cocaine (10 mg/kg i.p.) presented reduced [3H]-Dopamine uptake and increased cAMP production. Wistar rats were affected by the 10-day withdrawal of MPD in [3H]-dopamine uptake but not in cAMP accumulation; in addition, cocaine was unable to induce significant modifications in [3H]-dopamine uptake and in cAMP levels after the 10-day withdrawal of MPD. These results indicate a mechanism that could explain the high comorbidity between ADHD adolescent patients under methylphenidate treatment and substance abuse in adult life.  相似文献   

16.
Fluoxetine at 10 and 25 mg/kg increased (167 and 205%, respectively) the extracellular dopamine concentration in the prefrontal cortex, whereas 25 (but not 10) mg/kg citalopram raised (216%) dialysate dopamine. No compound modified dialysate dopamine in the nucleus accumbens. The effect of 25 mg/kg of both compounds on cortical extracellular dopamine was not significantly affected by 300 mg/kg p-chlorophenylalanine (PCPA) (fluoxetine, saline, 235%; PCPA, 230%; citalopram, saline, 179%; PCPA, 181%). PCPA depleted tissue and dialysate serotonin by approximately 90 and 50%, respectively, and prevented the effect of fluoxetine and citalopram on dialysate serotonin (fluoxetine, saline, 246%; PCPA, 110%; citalopram, saline, 155%; PCPA, 96%). Citalopram significantly raised extracellular serotonin from 0.1 to 100 microM (251-520%), whereas only 10 and 100 microM increased dialysate dopamine (143-231%). Fluoxetine similarly increased extracellular serotonin (98-336%) and dopamine (117-318%). PCPA significantly reduced basal serotonin and the effects of 100 microM fluoxetine (saline, 272%; PCPA, 203%) and citalopram (saline, 345%; PCPA, 258%) on dialysate serotonin but did not modify their effect on dopamine (fluoxetine, saline, 220%; PCPA, 202%; citalopram, saline, 191%; PCPA, 211%). The results clearly show that the effects of fluoxetine and of high concentrations of citalopram on extracellular dopamine do not depend on their effects on serotonin.  相似文献   

17.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effects of systemic administration of tyrosine and phenylalanine on the extracellular levels of tyrosine and dopamine were determined by microdialysis in the striatum of awake rats. In addition, the effects of these precursors on in vivo 3,4-dihydroxyphenylalanine (DOPA) formation were determined during continuous infusion of a decarboxylase inhibitor. Both precursors increased the dialysate levels of tyrosine sixfold, but only phenylalanine administration stimulated DOPA formation. However, neither precursor affected the release of dopamine. When the precursor administration was repeated in rats in which the release of dopamine was stimulated by haloperidol pretreatment, again no effect was seen on the release of dopamine. Systemic administration of tryptophan (100 mg/kg, i.p.) during continuous infusion of a decarboxylase inhibitor induced a threefold increase in the formation of 5-hydroxytryptophan and caused an increase in the release of serotonin during infusion of an uptake inhibitor to about 150% of controls. Finally, we investigated whether dietary precursors were able to influence neurotransmitter formation and release. Rats trained to consume their daily food in a period of 2 h were implanted with microdialysis probes. Scheduled eating induced a small increase in the extracellular levels of tyrosine (135% of controls), but the release of dopamine and the formation of 5-hydroxytryptophan during continuous infusion of a decarboxylase inhibitor were not affected.  相似文献   

19.
Extracellular fluid levels of dopamine and neurotensin in the rat prefrontal cortex were measured using in vivo microdialysis. Electrical stimulation of the median forebrain bundle resulted in increased release of both dopamine and neurotensin from the prefrontal cortex. Thus, stimulation of neurons in which dopamine and neurotensin are colocalized can evoke the in vivo release of both substances.  相似文献   

20.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号