首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
To establish a proteomic reference map for soybean leaves, we separated and identified leaf proteins using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS). Tryptic digests of 260 spots were subjected to peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. Fifty-three of these protein spots were identified by searching NCBInr and SwissProt databases using the Mascot search engine. Sixty-seven spots that were not identified by MALDI-TOF-MS analysis were analyzed with liquid chromatography tandem mass spectrometry (LC-MS/MS), and 66 of these spots were identified by searching against the NCBInr, SwissProt and expressed sequence tag (EST) databases. We have identified a total of 71 unique proteins. The majority of the identified leaf proteins are involved in energy metabolism. The results indicate that 2D-PAGE, combined with MALDI-TOF-MS and LC-MS/MS, is a sensitive and powerful technique for separation and identification of soybean leaf proteins. A summary of the identified proteins and their putative functions is discussed.  相似文献   

2.
A two-dimensional liquid-phase separation scheme coupled with mass spectrometry (MS) is presented for proteomic analysis of cell lysates from normal and malignant breast epithelial cell lines. Liquid-phase separations consist of isoelectric focusing as the first dimension and nonporous silica reverse-phase high-performance liquid chromatography (NPS-RP-HPLC) as the second dimension. Protein quantitation and mass measurement are performed using electrospray ionization-time of flight MS (ESI-TOF MS). Proteins are identified by peptide mass fingerprinting using matrix-assisted laser desorption ionization-time of flight MS (MALDI-TOF MS) and MALDI-quadrupole time of flight (QTOF)-tandem mass spectrometry (MS/MS). Two pH regions with 50-60 unique proteins in each pH range were chosen for analysis. Mass maps were created that allowed visualization of protein quantitation differences between normal and malignant breast epithelial cells. Of the approximately 110 unique proteins observed from mass mapping experiments over the limited pH range, 40 (36%) were positively identified by peptide mass fingerprinting and assigned to bands in the mass maps. Of these 40 proteins, 22 were more highly expressed in one or more of the malignant cell lines. These proteins represent potential breast cancer biomarkers that could aid in diagnosis, therapy, or drug development.  相似文献   

3.
Separation of proteins by two-dimensional gel electrophoresis (2-DE) coupled with identification of proteins through peptide mass fingerprinting (PMF) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is the widely used technique for proteomic analysis. This approach relies, however, on the presence of the proteins studied in public-accessible protein databases or the availability of annotated genome sequences of an organism. In this work, we investigated the reliability of using raw genome sequences for identifying proteins by PMF without the need of additional information such as amino acid sequences. The method is demonstrated for proteomic analysis of Klebsiella pneumoniae grown anaerobically on glycerol. For 197 spots excised from 2-DE gels and submitted for mass spectrometric analysis 164 spots were clearly identified as 122 individual proteins. 95% of the 164 spots can be successfully identified merely by using peptide mass fingerprints and a strain-specific protein database (ProtKpn) constructed from the raw genome sequences of K. pneumoniae. Cross-species protein searching in the public databases mainly resulted in the identification of 57% of the 66 high expressed protein spots in comparison to 97% by using the ProtKpn database. 10 dha regulon related proteins that are essential for the initial enzymatic steps of anaerobic glycerol metabolism were successfully identified using the ProtKpn database, whereas none of them could be identified by cross-species searching. In conclusion, the use of strain-specific protein database constructed from raw genome sequences makes it possible to reliably identify most of the proteins from 2-DE analysis simply through peptide mass fingerprinting.  相似文献   

4.
The Nelore bull (Bos taurus indicus) seminal plasma proteome was analyzed by MALDI-TOF MS and two-dimensional gel electrophoresis. A total of 260 spots were visualized in the 2-DE gel (pI range 3-10) and 13 spots could be identified by peptide mass fingerprinting corresponding to 11 different polypeptides. The results allowed the creation of the first proteomic map of Bos taurus indicus seminal plasma. The roles of the identified proteins in the bull seminal plasma are discussed.  相似文献   

5.
Proteomics methodologies hold great promise in basic renal research and clinical nephrology. The classical approach for proteomic analysis couples two-dimensional gel electrophoresis (2-DE) with protein identification by mass spectrometry, to produce more global information regarding normal protein expression and alterations in different physiological and pathological states. In this report we have expanded the identification of proteins in the renal cortex, improving the previously published map to facilitate the study of different diseases affecting the human kidney. About 250 spots were analyzed by peptide mass fingerprinting, 89 proteins and 74 isoforms for some of them were identified and implemented in the normal human renal cortex 2-DE reference map. This more comprehensive view of the proteome of the human renal cortex could be of invaluable help to the differential proteomic display of urological diseases.  相似文献   

6.
A new matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-ToF MS), developed specifically for the identification and characterization of proteins and peptides in proteomic investigations, is described. The mass spectrometer which can be integrated with the 2-D gel electrophoresis workflow is a bench-top instrument, enabling rapid, reliable and unattended protein identification in low-, as well as high-throughput proteomics applications. To obtain precise information on peptide sequences, the instrument utilizes a timed ion gate and a unique quadratic field reflectron (Z2 technology), allowing single-run, post-source decay (PSD) of selected peptides. In this study, the performance of the instrument in reflectron, PSD and linear mode, respectively, was investigated. The results showed that the limit of detection for a single peptide in reflectron mode was 125 amol with a signal to noise ratio exceeding 20. Average mass resolution for peptides larger than 2000 u was around 13,000 full width, half maximum (FWHM). The limit for protein identification during peptide mass fingerprinting (PMF) was 500 amol with a sequence coverage of 18%. Mass error during PMF analysis was less than 15 ppm for 17 out of 25 (68%) identified peptides. In PSD mode, a complete series of y-ions of a CAF-derivatized peptide could be obtained from 3.75 fmol of material. The average mass error of PSD-generated fragments was less than 0.14 u. Finally, in linear mode, intact proteins with molecular masses greater than 300,000 u were detected with mass errors below 0.2%.  相似文献   

7.
Kim SI  Kim JY  Kim EA  Kwon KH  Kim KW  Cho K  Lee JH  Nam MH  Yang DC  Yoo JS  Park YM 《Proteomics》2003,3(12):2379-2392
As an initial step to the comprehensive proteomic analysis of Panax ginseng C. A. Meyer, protein mixtures extracted from the cultured hairy root of Panax ginseng were separated by two-dimensional polyacrylamide gel electrophoresis (2-DE). The protein spots were analyzed and identified by peptide finger printing and internal amino acid sequencing by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization quadrupole-time of flight mass spectrometry (ESI Q-TOF MS), respectively. More than 300 protein spots were detected on silver stained two-dimensional (2-D) gels using pH 3-10, 4-7, and 4.5-5.5 gradients. Major protein spots (159) were analyzed by peptide fingerprinting or de novo sequencing and the functions of 91 of these proteins were identified. Protein identification was achieved using the expressed sequence tag (EST) database from Panax ginseng and the protein database of plants like Arabidopsis thaliana and Oryza sativa. However, peptide mass fingerprinting by MALDI-TOF MS alone was insufficient for protein identification because of the lack of a genome database for Panax ginseng. Only 17 of the 159 protein spots were verified by peptide mass fingerprinting using MALDI-TOF MS whereas 87 out of 102 protein spots, which included 13 of the 17 proteins identified by MALDI-TOF MS, were identified by internal amino acid sequencing using tandem mass spectrometry analysis by ESI Q-TOF MS. When the internal amino acid sequences were used as identification markers, the identification rate exceeded 85.3%, suggesting that a combination of internal sequencing and EST data analysis was an efficient identification method for proteome analysis of plants having incomplete genome data like ginseng. The 2-D patterns of the main root and leaves of Panax ginseng differed from that of the cultured hairy root, suggesting that some proteins are exclusively expressed by different tissues for specific cellular functions. Proteome analysis will undoubtedly be helpful for understanding the physiology of Panax ginseng.  相似文献   

8.
Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.  相似文献   

9.
Binding of the Bacillus thuringiensis Cry1Ac toxin to specific receptors in the midgut brush border membrane is required for toxicity. Alteration of these receptors is the most reported mechanism of resistance. We used a proteomic approach to identify Cry1Ac binding proteins from intestinal brush border membrane (BBM) prepared from Heliothis virescens larvae. Cry1Ac binding BBM proteins were detected in 2D blots and identified using peptide mass fingerprinting (PMF) or de novo sequencing. Among other proteins, the membrane bound alkaline phosphatase (HvALP), and a novel phosphatase, were identified as Cry1Ac binding proteins. Reduction of HvALP expression levels correlated directly with resistance to Cry1Ac in the YHD2-B strain of H. virescens. To study additional proteomic alterations in resistant H. virescens larvae, we used two-dimensional differential in-gel electrophoresis (2D-DIGE) to compare three independent resistant strains with a susceptible strain. Our results validate the use of proteomic approaches to identify toxin binding proteins and proteome alterations in resistant insects.  相似文献   

10.
11.
Proteomic analysis of myocardial tissue from patient populations is critical to our understanding of cardiac disease, but has been limited until now by the small size of biopsies (approximately 20-50 microg), and complicated by the difference in relative abundance of contractile proteins over other cellular components. Here we describe an approach to analysis of myocardial biopsies from patients undergoing coronary artery bypass surgery. First, individual biopsies are selectively extracted, producing subfractions that correspond to the contractile proteins and the cytosolic proteins. Two-dimensional electrophoresis separated proteins are detected by first staining with Coomassie blue then silver, to permit a wider range of accurate quantification. Western blotting of two-dimensional separated samples, to validate peptide mass fingerprinting data, previously required additional gel separations for transfer since staining protocols are not compatible with transfer to membranes or immunoblotting. An existing silver destaining protocol was adapted to allow removal of silver from a whole gel, followed by transfer and Western blotting. An existing Coomassie blue removal protocol was also adapted to permit Western blotting of gels stained with Coomassie blue and silver. Together, these techniques permit peptide mass fingerprinting concurrent with Western blotting of a single protein spot from a single biopsy, eliminating the need for repeated gel separations, and improving spot alignment between immunoblots and stained gels. In the end, this approach may allow a more complete characterization of protein changes in small human biopsies, and also reduce the number of repeated gel separations necessary for a standard proteomic analysis.  相似文献   

12.
Identification of proteins by mass spectrometry (MS) is an essential step in pro- teomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.  相似文献   

13.
Identification of proteins by mass spectrometry (MS) is an essential step in pro- teomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when high- throughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.  相似文献   

14.
家蚕精巢蛋白质的双向电泳及质谱分析   总被引:2,自引:0,他引:2  
精巢是雄性家蚕Bombyx mori的生殖腺,它的主要功能是产生精子,全面检测和鉴定精巢器官的蛋白分布将为分析家蚕雄性个体的发育和繁殖奠定基础。本研究利用双向聚丙烯酰胺凝胶电泳和蛋白硝酸银染色技术对家蚕5龄第5天幼虫的精巢组织进行了蛋白检测,利用基质辅助激光解析质量飞行时间质谱(MALDI-TOF-MS)对表达量较高的蛋白点进行了肽质量指纹图谱鉴定。结果表明:家蚕精巢蛋白质可以检测出1 000个以上的蛋白点,这些蛋白点主要集中在分子量为15~90 kD区域,等电点3.5~9之间,其中60个蛋白点得到了成功鉴定,按照已知或推测的蛋白功能,将其分为8类,包括:细胞骨架和细胞结构蛋白,膜蛋白或信号相关蛋白,大量应激反应蛋白(伴侣蛋白),线粒体和能量产生相关蛋白,转录调控和翻译及DNA/RNA结合相关蛋白,酶和少量血液组成蛋白。其中很多蛋白可能在鞭毛形成、能量代谢及减数分裂过程中有重要作用。这些结果为进一步认识家蚕精子形成过程提供了重要的生物学信息。  相似文献   

15.
A new methodology for quantitative analysis of proteins is described, applying stable-isotope labeling by small organic molecules combined with one- or two-dimensional electrophoresis and MALDI-TOF-MS, also allowing concurrent protein identification by peptide mass fingerprinting. Our method eliminates fundamental problems in other existing isotope-tagging methods requiring liquid chromatography and MS/MS, such as isotope effects, fragmentation, and solubility. It is also anticipated to be more practical and accessible than those LC-dependent methods.  相似文献   

16.
In order to understand the allograft rejection in orthotopic liver transplantation (OLT), an allograft rejection rat model was established and studied by proteomic approach. The protein expression profiles of liver tissues were acquired by fluorescence two-dimensional difference gel electrophoresis (2D DIGE) that incorporated a pooled internal standard and reverse fluorescent labeling method. The expression levels of 27 protein spots showed significant changes in acute rejection rats. Among these spots, 19 were identified with peptide mass fingerprinting using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) after tryptic in-gel digestion. The results of the present paper could be helpful for our better understanding of allograft rejection in organ transplantation.  相似文献   

17.
18.
In this study, we performed extensive proteomic analysis of sperm from the ascidian Ciona intestinalis. Sperm were fractionated into heads and flagella, followed by further separation into Triton X-100-soluble and -insoluble fractions. Proteins from each fraction and whole sperm were separated by isoelectric focusing using two different pH ranges, followed by SDS-PAGE at two different polyacrylamide concentrations. In total, 1,294 protein spots representing 304 non-redundant proteins were identified by mass spectrometry (MALDI-TOF). On comparison of the proteins in each fraction, we were able to identify the proteins specific to different sperm compartments. Further comparison with the testis proteome allowed the pairing of proteins with sperm-specific functions. Together with information on gene expression in developing embryos and adult tissues, these results provide insight into novel cellular and functional aspects of sperm proteins, such as distinct localization of actin isoforms, novel Ca(2+)-binding proteins in axonemes, localization of testis-specific serine/threonine kinase, and the presence of G-protein coupled signaling and ubiquitin pathway in sperm flagella.  相似文献   

19.
The aim of this study was to identify and analyse human sperm proteins from normozoospermic men using 2-dimensional electrophoresis (2-DE) and mass spectrometry (MS). We identified 73 different sperm proteins, including two less characterized human sperm proteins, Annexin A7 (ANXA7) and c14orf105. Bioinformatic analysis of detected sperm proteins revealed new carbohydrate and lipid metabolic pathways, which supply energy to motile sperm. A comparison of our data with available mRNA microarray data from the human testis allows for validation of identified sperm proteins and aids in the recognition of their physiological pathways.  相似文献   

20.
植物蛋白质组学研究进展   总被引:39,自引:0,他引:39       下载免费PDF全文
 蛋白质组学是后基因组时代功能基因组学研究的新兴学科和热点领域。该文简要介绍了蛋白质组学产生的科学背景、研究方法和研究内容。蛋白质组学研究方法主要有双向聚丙烯酰胺凝胶电泳(2D-PAGE)、质谱(Mass-spectrometric)技术、蛋白质芯片(Protein chips)技术、酵母双杂交系统(Yeast two-hybrid system)、植物蛋白质组数据库等。其应用的范围包括植物群体遗传学、在个体水平上植物对生物和非生物环境的适应机制、植物的发育和组织器官的分化过程,以及不同亚细胞结构在生理生态过程中的作用等诸多方面。同时对植物蛋白质组学的发展前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号