首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven-week-old plants (symbiotic stage) of yellow lupine (Lupinus luteus L. cv. Ventus) were subjected for 8 days to 5 mM nitrate treatment or to drought stress to search for possible activation of bacteroidal nitrate and nitrite reductases. Both treatments affected activities of malate dehydrogenase and aspartate aminotransferase in nodule cytosol and therefore are presumed to impose O2-limitation to nodule metabolism. However, no significant symptoms of senescence of nodules were found. Both nitrate treatment and drought stress increased rhizobial nitrate and nitrite reductase activities in contrast to noted decrease of corresponding activities in nodule cytoplasm. Differential regulation supports the hypothesis that bacteroidal enzymes can act in dissimilatory mode when nodule respiration is limited due to environmental stresses.  相似文献   

2.
Glyphosate is a nonselective herbicide that kills weeds and other plants competing with crops. Glyphosate specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, thereby depleting the cell of EPSP serving as a precursor for biosynthesis of aromatic amino acids. Glyphosate is considered to be toxicologically safe for animals and humans. Therefore, it became the most-important herbicide in agriculture. However, its intensive application in agriculture is a serious environmental issue because it may negatively affect the biodiversity. A few years after the discovery of the mode of action of glyphosate, it has been observed that bacteria evolve glyphosate resistance by acquiring mutations in the EPSP synthase gene, rendering the encoded enzyme less sensitive to the herbicide. The identification of glyphosate-resistant EPSP synthase variants paved the way for engineering crops tolerating increased amounts of the herbicide. This review intends to summarize the molecular mechanisms underlying glyphosate resistance in bacteria. Bacteria can evolve glyphosate resistance by (i) reducing glyphosate sensitivity or elevating production of the EPSP synthase, by (ii) degrading or (iii) detoxifying glyphosate and by (iv) decreasing the uptake or increasing the export of the herbicide. The variety of glyphosate resistance mechanisms illustrates the adaptability of bacteria to anthropogenic substances due to genomic alterations.  相似文献   

3.
Import of the precursor to 5-enolpyruvylshikimate-3-phosphate synthase (pEPSPS) into chloroplasts is inhibited by the herbicide glyphosate. Inhibition of import is maximal at glyphosate concentrations of ≥10 μm and occurs only when pEPSPS is present as a ternary complex of enzyme–shikimate-3-phosphate–glyphosate. Glyphosate alone had no effect on the import of pEPSPS since it is not known to interact with the enzyme in the absence of shikimate-3-phosphate. Experiments with wild-type and glyphosate-resistant mutant forms of pEPSPS show that inhibition of import is directly proportional to the binding constants for glyphosate. Inhibition of import is thus a direct consequence of glyphosate binding to the enzyme–shikimate-3-phosphate complex. The potential for non-specific effects of glyphosate on the chloroplast transport mechanism has been discounted by showing that import of another chloroplast-designated protein was unaffected by high concentrations of glyphosate and shikimate-3-phosphate. The mechanism of import inhibition by glyphosate is consistent with a precursor unfolding/refolding model.  相似文献   

4.
Cadmium effects on nodule structure and changes in organic and amino acids, proteins, nutrients and some stress indicators were studied in nodules of white lupin (Lupinus albus L., cv. Multolupa). Plants were grown hydroponically on perlite for 49 d with (18 μM) or without Cd in the nutrient solution. Cadmium-treated plants showed decreases in leaf chlorophyll and shoot sucrose concentrations, but sucrose did not change in nodules. Cadmium application produced alterations in nodule cortex and infected zone structure. Furthermore, Cd supply caused a marked decrease in P, K, leghemoglobin, N–amino compounds, malate, succinate and soluble protein in the nodules. Conversely, the levels of lipid peroxidation and total thiols increased strongly. Results obtained suggest that white lupin nodules are Cd sensitive, in spite of Cd sequestering by cell walls and thiols. The main phytotoxic effects of Cd on nodule structure and function were the occlusion with glycoprotein of intracellular spaces of nodule cortex, alterations in symbiosomes, enrichment in Cd of cell walls and oxidative stress. Glycoprotein accumulation and leghemoglobin depletion may be considered useful indicators of Cd stress in white lupin nodules.  相似文献   

5.
Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.  相似文献   

6.
The relations of catalase activity to the efficiency of symbiotic dinitrogen fixation and leghemoglobin (Lb) content were investigated in roots and nodules of several legume plant species together with the catalase distribution between the inner bacteroidal and the outer cortical nodule tissues. The catalase activity in the nodules exceeded that of the roots of the amide- and ureide-synthesizing plant species by one and two orders of magnitude. During the growth period, catalase activity and Lb content changed in parallel and reached their highest levels early in the stage of flowering or fruit formation, depending on plant species. In the case of effective symbiosis, catalase activity in the nodules was 2.5–5 times higher than in the case of ineffective symbiosis. Catalase activity in the bacteroidal zone of the nodules was several times higher than that of the cortical tissue, and two nodule tissues differed in catalase activity more notably in the plant species exporting ureides. The authors suggest that high catalase activity in the nodules, especially in their bacteroidal zone, is essential for the efficient functioning of the symbiotic system of dinitrogen fixation in both ureide- and amide-transporting plants.  相似文献   

7.
NaCl对小麦幼苗叶肉细胞超微结构的影响   总被引:3,自引:0,他引:3  
在含NaCl的培养液中培养小麦幼苗,3天后取样观察叶肉细胞,其超微结构基本正常,细胞核和细胞壁没有明显变化。但线粒体结构普遍受到损害,表现在外膜、内膜和嵴膨胀,结构模糊。叶绿体被膜和片层结构仍保持完整,仅有部分叶绿体的片层排列方向发生改变,由原来平行排列扭转为近于垂直排列。  相似文献   

8.
Summary The monoclonal antibodies MAC236 and MAC265, raised against a soluble component of pea nodules, were used to elucidate the presence and subcellular localization of glycoprotein epitopes during the development of lupin (Lupinus albus L. cv. Multolupa) nodules, by means of immunocytochemistry and Western blot analysis. These antibodies recognize a single band of 95 kDa in pea, soybean and bean nodules, whilst two different bands of 240 and 135 kDa cross-react with MAC236 and MAC265 respectively in lupin nodules. This fact may indicate that the recognized epitopes can be present in different subcellular compartments and/or play different roles through the development of functional nodules. The results show that MAC265 is mainly associated with Bradyrhizobium infection and with the development of nodule primordium, in the first stages of nodulation. MAC265 is also detected when glycoprotein transport takes place across the cytoplasm and the cell wall, and also in the intercellular spaces of the middle cortex, attached to cell walls. The amount of MAC265 remains constant through nodule development. In contrast the amount of MAC236 increases with nodule age, parallel to the establishment of nitrogenase activity. This antibody is localized in cytoplasmic globules attached to the inner side of cell walls in the middle cortex, and mainly in the matrix filling the intercellular spaces of the middle and inner cortex. This main site of localization of MAC236 may indicate a role in the functioning of the oxygen diffusion barrier.  相似文献   

9.
Riechers DE  Wax LM  Liebl RA  Bush DR 《Plant physiology》1994,105(4):1419-1425
Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake.  相似文献   

10.
Farmers report that some glyphosate-resistant soybean varieties are visually injured by glyphosate. Glyphosate is the main herbicide that directly affects the synthesis of secondary compounds. In this work, we evaluated the effect of increasing rates of glyphosate on lignin and amino acid content, photosynthetic parameters and dry biomass in the early maturity group cultivar BRS 242 GR soybean. Plants were grown in half-strength complete nutrient solution and subjected to various rates of glyphosate either as a single or in sequential applications. All parameters evaluated were affected by increasing glyphosate rates. The effects were more pronounced as glyphosate rates increased, and were more intense with a single total application than sequential applications at lower rates.  相似文献   

11.
Inoculation with a mercury (Hg)-resistant Bradyrhizobium canariense strain (L7AH) confers on Lupinus albus the ability to grow under high concentrations of Hg and to accumulate this heavy metal. To elucidate the mechanism/s implicated in the acquisition of this tolerance, lupins were inoculated with resistant (L7AH) and sensitive (L3) strains and fed with different Hg solutions (0–200 μM HgCl2). Mercury application resulted in cellular alterations in leaves and nodules, depending on the strain inoculated. Mesophyll cell chloroplasts from L7AH-inoculated plants treated with Hg showed similar structure to those in control plants, while those of L3-inoculated plants treated with Hg showed a large increase in the number and size of starch granules. This resulted in a large increase in chloroplast and cell size which produced altered grana distribution with a totally disorganized thylakoid structure and clear signs of degradation. The preservation of the distribution and morphology of chloroplasts in L7AH-inoculated plants may be a reason why the photosynthetic efficiency remained unchanged even after treatment with 200 μM of Hg. Mercury exposure produced changes in L3-infected nodule ultrastructure, with evident signs of degradation, especially in bacteroids. However, only slight alterations of nodule morphology were noticed in L7AH-infected nodules. X-ray microanalysis showed that, while Hg was present in the nodules formed by L3, in both cortex and infected zone, in those formed by L7AH only low levels of Hg in the outermost layers of the cortex were detected. The exclusion of Hg from the infected zone together with the conservation of the symbiosome structure in nodules from L7AH-inoculated plants may explain the maintenance of nitrogenase activity.  相似文献   

12.
The herbicide glyphosate has several potential entry points into composting sites and its impact on composting processes has not yet been evaluated. To assess its impact on bacterial diversity and abundance as well as on community composition and dynamics, we conducted a mesocosm experiment at the Montreal Botanical Garden. Glyphosate had no effect on physicochemical property evolution during composting, while it was completely dissipated by the end of the experiment. Sampling at Days 0, 2, 28 and 112 of the process followed by 16S rRNA amplicon sequencing also found no effect of glyphosate on species richness and community composition. Differential abundance analyses revealed an increase of a few taxa in the presence of glyphosate, namely TRA3-20 (order Polyangiales), Pedosphaeraceae and BIrii41 (order Burkholderiales) after 28 days. In addition, five amplicon sequence variants (ASVs) had lower relative abundance in the glyphosate treatment compared to the control on Day 2, namely Comamonadaceae, Pseudomonas sp., Streptomyces sp., Thermoclostridium sp. and Actinomadura keratinilytica, while two ASVs were less abundant on Day 112, namely Pedomicrobium sp. and Pseudorhodoplanes sp. Most differences in abundance were measured between the different sampling points within each treatment. These results present glyphosate as a poor determinant of species recruitment during composting.  相似文献   

13.
14.
Glyphosate is a systemic, nonselective and most widely used herbicide in the world. The introduction of glyphosate-resistant crops in the mid-1990s resulted in a dramatic increase in the use of glyphosate herbicide making it most widely used herbicide in the world. The average maize yield loss in the field caused by pests is around 20 % but in many regions it is much higher. It is now clear that glyphosate causes broader range of physiological alterations than previously assumed and some plants gain higher level of resistance to glyphosate without the need to use genetic engineering methods. To understand the mechanisms of such heightened resistance we must first know the processes mediating the plants’ death in response to glyphosate treatment. Here, we show that 12 miRNAs, belonging to miR167, miR396, miR159, miR156, miR169, miR444 and miR827 families, are significantly upregulated, and one, miR166, downregulated following glyphosate treatment. These miRNAs have been previously shown to be involved in abiotic stress responses and implicated in senescence. Strikingly, two of the induced miRNAs, miR444 and miR827, have been shown to regulate phosphate transport pathways, which seem to be common for Pi and glyphosate uptake.  相似文献   

15.
Glyphosate is a globally popular herbicide to kill weeds and its wide applications may lead to accumulation in coastal oceans as a source of phosphorus (P) nutrient or growth inhibitor of phytoplankton. We studied the physiological effects of glyphosate on fourteen species representing five major coastal phytoplankton phyla (haptophyta, bacillariophyta, dinoflagellata, raphidophyta, and chlorophyta). Based on growth responses to different concentrations of glyphosate under contrasting dissolved inorganic phosphorus (DIP) conditions, we found that phytoplankton species could be classified into five groups. Group I (Emiliania huxleyi, Skeletonema costatum, Phaeodactylum tricornutum) could utilize glyphosate as sole P-source to support growth in axenic culture, but in the presence of DIP, they were inhibited by both 36-μM and 360-μM glyphosate. Group II (Karenia mikimotoi, Prorocentrum minimum, Dunaliella tertiolecta, Symbiodinium sp., Heterosigma akashiwo and Alexandrium catenella) could not utilize glyphosate as sole P-source to support growth, and in the presence of DIP growth was not affected by 36-μM but inhibited by 360-μM glyphosate. Glyphosate consistently enhanced growth of Group III (Isochrysis galbana) and inhibited Group IV (Thalassiosira weissflogii, Thalassiosira pseudonana and Chattonella marina) regardless of DIP condition. Group V (Amphidinium carterae) exhibited no measurable response to glyphosate regardless of DIP condition. This grouping is not congruent with the phylogenetic relationships of the phytoplankton species suggesting functional differentiation driven by environmental pressure. We conclude that glyphosate could be used as P-source by some species while is toxic to some other species and yet has no effects on others. The observed differential effects suggest that the continued use of glyphosate and increasing concentration of this herbicide in the coastal waters will likely exert significant impact on coastal marine phytoplankton community structure.  相似文献   

16.
《Annals of botany》1997,79(5):493-503
The development of the N2-fixing symbiosis between white lupin (Lupinus albusL.) cv. Multolupa andBradyrhizobiumstrain ISLU16 was followed using the acetylene reduction assay (ARA), immunoblots of protein extracts, and microscopy/immunogold labelling at 0, 8, 12, 17 and 20 d after infection. There was no ARA at 0, 8 and 12 d, although macroscopically visible nodule primordia had formed on roots by 8 d. The lack of nitrogenase at these times was confirmed by a negative signal to immunogold labelling with nitrogenase-specific antibodies. At 17 d three out of six plants had ARA, and nodules from these gave a positive signal with the nitrogenase antibody. By contrast, ARA(fix) nodules at 17 d were smaller (mean radius of 0.49 mm compared to 1.01 mm with fix+nodules) and gave a negative signal with the nitrogenase antibody. Western blots of nodule protein extracts using the monoclonal antibodies MAC236 and MAC265 (which recognize two epitopes on a glycoprotein which is considered to be involved in both rhizobial infection and the regulation of nodule oxygen diffusion) gave a strong signal with nodules (fix+) from 20 d plants and with 17 d fix+plants. The signal with MAC236/MAC265 was substantially weaker with nodules from 17 d fixplants, and there was no signal apparent from nodules/nodulated roots from the 0, 8 and 12 d harvests. However, further investigation using immunogold labelling revealed that not only were MAC236 and MAC265 expressed within cortical intercellular spaces in 20 d and 17 d fix+/fixnodules, but they were also strongly expressed in the developing cortex surrounding the newly-infected tissue in 8 d nodules, as well as in intercellular spaces within the cortex and infected tissue of 12 d nodules. These data demonstrate that the glycoprotein recognized by MAC236 and MAC265 is present before the onset of nitrogenase expression and function, but expression of the epitopes appears to be enhanced from the onset of N2fixation. Nodules at all harvests were investigated for the presence of infection threads, as the MAC236/MAC265-recognized glycoprotein is also a component of the infection thread matrix in nodules from other legumes. Infection threads were not seen in nodules from any of the harvests except for the 20 d nodules, and then only after serial sectioning. The latter revealed occasional short wide infection threads entering and releasing rhizobia into small pockets of uninfected cells, within the infected tissue, but not within the meristems. The matrix of these infection threads labelled weakly, or not at all, with MAC236 and MAC265, and it was concluded that the majority of the MAC236/MAC265 detected in lupin nodule extracts originated from glycoprotein within cortical intercellular spaces.  相似文献   

17.
Superoxide dismutases (SODs) are metalloenzymes that play a primary role in the protection against oxidative stress in plants and other organisms. We have characterized four SOD genes in Lotus japonicus and have analyzed their expression in roots and four developmental stages of nodules. The expression of cytosolic CuZnSOD, at the mRNA, protein, and enzyme activity levels, decreases with nodule age, and the protein is localized in the dividing cells and infection threads of emergent nodules and in the infected cells of young nodules. The mitochondrial MnSOD was downregulated, whereas the bacteroidal MnSOD displayed maximal protein and enzyme activity levels in older nodules. Two additional genes, encoding plastidic (FeSOD1) and cytosolic (FeSOD2) FeSOD isoforms, were identified and mapped. The genes are located in different chromosomes and show differential expression. The FeSOD1 mRNA level did not change during nodule development, whereas FeSOD2 was upregulated. The distinct expression patterns of the SOD genes may reflect different regulatory mechanisms of the enzyme activities during nodule ontogeny. In particular, at the mRNA and activity levels, the virtual loss of cytosolic CuZnSOD in mature and old nodules, concomitant with the induction of FeSOD2, suggests that the two enzymes may functionally compensate each other in the cytosol at the late stages of nodule development.  相似文献   

18.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   

19.
Pseudomonas sp. strain PG2982 has the ability to use the phosphonate herbicide, glyphosate, as a sole phosphorus source (J. K. Moore, H. D. Braymer, and A. D. Larson, Appl. Environ. Microbiol. 46:316-320, 1983). Glyphosate uptake is maximal in the late log phase of growth and is induced by phosphate starvation. Uptake is inhibited by phosphate and arsenate, but not by the amino acids glycine and sarcosine. The Km and Vmax for glyphosate uptake were calculated to be 23 microM and 0.97 nmol/mg (dry weight) per min, respectively. A phosphate transport system with a broad substrate specificity may be responsible for glyphosate uptake.  相似文献   

20.
Yan HQ  Chang SH  Tian ZX  Zhang L  Sun YC  Li Y  Wang J  Wang YP 《PloS one》2011,6(5):e19732
Glyphosate is a non-selective broad-spectrum herbicide that inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS, also designated as AroA), a key enzyme in the aromatic amino acid biosynthesis pathway in microorganisms and plants. Previously, we reported that a novel AroA (PpAroA1) from Pseudomonas putida had high tolerance to glyphosate, with little homology to class I or class II glyphosate-tolerant AroA. In this study, the coding sequence of PpAroA1 was optimized for tobacco. For maturation of the enzyme in chloroplast, a chloroplast transit peptide coding sequence was fused in frame with the optimized aroA gene (PparoA1(optimized)) at the 5' end. The PparoA1(optimized) gene was introduced into the tobacco (Nicotiana tabacum L. cv. W38) genome via Agrobacterium-mediated transformation. The transformed explants were first screened in shoot induction medium containing kanamycin. Then glyphosate tolerance was assayed in putative transgenic plants and its T(1) progeny. Our results show that the PpAroA1 from Pseudomonas putida can efficiently confer tobacco plants with high glyphosate tolerance. Transgenic tobacco overexpressing the PparoA1(optimized) gene exhibit high tolerance to glyphosate, which suggest that the novel PpAroA1 is a new and good candidate applied in transgenic crops with glyphosate tolerance in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号