首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NO作为细胞间信息传递的重要调节因子,在肿瘤的发生、发展以及转移过程中被广泛研究。一氧化氮合酶是合成NO的关键酶,诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)通常在应激、荷瘤等病理状态下被激活,产生大量NO。NO具有细胞毒性,与机体免疫反应及细胞凋亡有关,在许多致癌和抑癌机制中扮演着重要角色。实验探讨了光动力学疗法(photodynamic therapy,PDT)处理产生的小鼠乳腺癌凋亡细胞对巨噬细胞产生NO的影响,从而确定活化的巨噬细胞在肿瘤生长中的作用。  相似文献   

2.
3.
Nitric oxide (NO)-derived from T lymphocytes in an autocrine fashion can modulate events in the cell. However, the exact role of NO on the control of lymphocyte growth is controversial since both stimulation and inhibition have been demonstrated. Nitric oxide synthase (NOS) activity in normal and tumor T lymphocyte proliferation was studied here. Resting normal T lymphocytes displayed low levels of NOS activity that were slightly increased upon mitogenic stimulation. In contrast, BW5147 T lymphoma cells displayed higher basal levels than normal T lymphocytes that were significantly augmented when induced to proliferate. This activity was slightly modified in the presence of the calcium chelator EGTA and was blocked by competitive and irreversible NOS inhibitors, as well as by selective blockers of iNOS. Furthermore, tumor but not normal cell proliferation was impaired by NOS and iNOS blockers, while a calcium blocker only affected normal cell growth. iNOS expression, both at the protein and at the mRNA levels, was demonstrated on growing BW5147 cells but not on arrested tumor or normal lymphocytes. The contribution of iNOS to sustained proliferation of tumor cells is discussed.  相似文献   

4.
Nitric oxide (NO) generated by inducible NO synthase (iNOS) contributes critically to inflammatory injury and host defense. While previously thought as a soluble protein, iNOS was recently reported to form aggresomes inside cells. But what causes iNOS aggresome formation is unknown. Here we provide evidence demonstrating that iNOS aggresome formation is mediated by its own product NO. Exposure to inflammatory stimuli (lipopolysaccharide and interferon-γ) induced robust iNOS expression in mouse macrophages. While initially existing as a soluble protein, iNOS progressively formed protein aggregates as a function of time. Aggregated iNOS was inactive. Treating the cells with the NOS inhibitor N-nitro-l-arginine methyl ester (L-NAME) blocked NO production from iNOS without affecting iNOS expression. However, iNOS aggregation in cells was prevented by L-NAME. The preventing effect of NO blockade on iNOS aggresome formation was directly observed in GFP-iNOS-transfected cells by fluorescence imaging. Moreover, iNOS aggresome formation could be recaptured by adding exogenous NO to L-NAME-treated cells. These studies demonstrate that iNOS aggresome formation is caused by NO. The finding that NO induces iNOS aggregation and inactivation suggests aggresome formation as a feedback inhibition mechanism in iNOS regulation.  相似文献   

5.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

6.
7.
8.
Nitric oxide (NO) produced by an inducible nitric oxide synthase (iNOS or NOS2) plays a major microbicidal role in murine macrophages and its importance is now emerging also in the dog and human models. In dogs we demonstrated that macrophages in vitro infected with Leishmania infantum produced NO, after stimulation with cytokine-enriched peripheral blood mononuclear cell supernatants. In addition, parasite killing was reduced by the NOS inhibitor L-NG monomethylarginine. On the contrary, canine blood monocytes before macrophage differentiation did not release NO, and their leishmanicidal activity was instead correlated with superoxide anion and interferon (IFN)-gamma production. In human macrophage cultures, after infection with Leishmania infantum, we showed both iNOS expression by immunofluorescence and western blotting and NO release by the Griess reaction for nitrites. Various cytokines and prostaglandins can differently modulate NO synthesis. In our experiments, stimulation by recombinant human IFN-gamma and bacterial lipopolysaccharide greatly enhanced iNOS expression and NO production in human macrophages. In addition, the prostaglandin E2 increased NO release in activated, Leishmania-infected human macrophages. These results are interesting in the light of a possible immunological or pharmacological regulation of NO synthesis and microbicidal functions of macrophages.  相似文献   

9.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

10.
Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.  相似文献   

11.
Nitric oxide (NO) is an important regulator of immune responses. Effects of cytokines, such as tumor necrosis factor (TNF)-alpha or IFN-gamma, and bacterial products, such as lipopolysaccharide, on macrophage NO production have been well documented; however, the role of the extracellular matrix proteins, including collagen, in this process remains unclear. We previously reported that discoidin domain receptor 1 (DDR1), a nonintegrin collagen receptor, was expressed in human macrophages, and its activation facilitated their differentiation as well as cytokine/chemokine production. Here, we examined the role for DDR1 in collagen-induced NO production using the murine macrophage cell line J774 cells that endogenously express DDR1. Activation of J774 cells with collagen induced the expression of inducible NO synthase (iNOS) and NO production. Inhibition of DDR1, but not beta1-integrins, abolished collagen-induced iNOS and NO production. Activation of J774 cells with collagen-activated nuclear factor-kappaB, p38 mitogen-activated protein kinase (MAPK), and c-jun N-terminal kinase (JNK) and a pharmacological inhibitor of each signaling molecule significantly reduced collagen-induced NO production. Thus, we have demonstrated, for the first time, that the interaction of DDR1 with collagen induces iNOS expression and subsequent NO synthesis in J774 cells through activation of NF-kappaB, p38 MAPK, and JNK and suggest that intervention of DDR1 signaling in macrophages may be useful in controlling inflammatory diseases in which NO plays a critical role.  相似文献   

12.
BACKGROUND: Nitric oxide (NO) is cytostatic for proliferating cells, inhibits microbial growth, and down-regulates the synthesis of specific proteins. Studies were undertaken to determine the mechanism by which NO inhibits total protein synthesis and whether the inhibition correlates with established cytostatic activities of NO. MATERIALS AND METHODS: In in vitro experiments, various cell types were exposed to NO using either donors or expression of inducible NO synthase (iNOS). The capacity of NO to suppress total protein synthesis, measured by incorporation of 35S-methionine into protein, was correlated with the capacity of NO to suppress cell proliferation, viral replication, or iNOS expression. Phosphorylation of eIF-2 alpha was examined as a possible mechanism for the suppressed protein synthesis by NO. RESULTS: Both NO donors and expression of the iNOS suppressed total protein synthesis in L929 cells and A2008 human ovarian tumor cells in parallel with decreased cell proliferation. Suppressed protein synthesis was also shown to correlate with decreased vaccinia virus proliferation in murine peritoneal macrophages in an iNOS-dependent manner. Furthermore, iNOS expression in pancreatic islets or RAW264.7 cells almost completely inhibited total protein synthesis, suggesting that nonspecific inhibition of protein synthesis may be the mechanism by which NO inhibited the synthesis of specific proteins such as insulin or iNOS itself. This possibility was confirmed in RAW264.7 cells where the inhibition of total protein synthesis correlated with the decreased iNOS protein. The decrease in protein levels occurred without changes in iNOS mRNA levels, implicating an inhibition of translation. Mechanistic studies revealed that iNOS expression in RAW264.7 cells resulted in the phosphorylation of eIF-2 alpha and inhibition of the 80S ribosomal complex formation. CONCLUSIONS: These results suggest that NO suppresses protein synthesis by stimulating the phosphorylation of eIF-2 alpha. Furthermore, our observations indicate that nonspecific inhibition of protein synthesis may be a generalized response of cells exposed to high levels of NO and that inhibition of protein synthesis may contribute to many of the described cytostatic actions of NO.  相似文献   

13.
Nitric oxide (NO) production was increased in macrophages during inflammation. Casein-elicitation of rodents causing a peritoneal inflammation offered a good model to study alterations in the metabolism of L-arginine, the precursor of NO synthesis. The utilization of L-arginine for NO production, arginase pathway and protein synthesis were studied by radioactive labeling and chromatographic separation. The expression of NO synthase and arginase was studied by Western blotting.Rat macrophages utilized more arginine than mouse macrophages (228+/-27 versus 71+/-12.8pmol per 10(6) macrophages). Arginine incorporation into proteins was low in both species (<15% of labeling). When NO synthesis was blocked, arginine was utilized at a lower general rate, but L-ornithine formation did not increase. The expression of enzymes utilizing arginine increased. NO production was raised mainly in rats (1162+/-84pmol citrulline per 10(6) cells) while in mice both arginase and NO synthase were active in elicited macrophages (677+/-85pmol ornithine and 456+/-48pmol citrulline per 10(6) cells).We concluded, that inflammation induced enhanced L-arginine utilization in rodent macrophages. The expressions and the activities of arginase and NO synthase as well as NO formation were increased in elicited macrophages. Specific blocking of NO synthesis did not result in the enhanced effectivity of the arginase pathway, rather was manifested in a general lower rate of arginine utilization. Different rodent species reacted differently to inflammation: in rats, high NO increase was found exclusively, while in mice the activation of the arginase pathway was also important.  相似文献   

14.
Nitric oxide (NO) is a multifunctional signaling molecule and a key vasculoprotective and potential osteoprotective factor. NO regulates normal bone remodeling and pathological bone loss in part through affecting the recruitment, formation, and activity of bone-resorbing osteoclasts. Using murine RAW 264.7 and primary bone marrow cells or osteoclasts formed from them by receptor activator of NF-kappaB ligand (RANKL) differentiation, we found that inducible nitric-oxide synthase (iNOS) expression and NO generation were stimulated by interferon (IFN)-gamma or lipopolysaccharide, but not by interleukin-1 or tumor necrosis factor-alpha. Surprisingly, iNOS expression and NO release were also triggered by RANKL. This response was time- and dose-dependent, required NF-kappaB activation and new protein synthesis, and was specifically blocked by the RANKL decoy receptor osteoprotegerin. Preventing RANKL-induced NO (via iNOS-selective inhibition or use of marrow cells from iNOS-/- mice) increased osteoclast formation and bone pit resorption, indicating that such NO normally restrains RANKL-mediated osteoclastogenesis. Additional studies suggested that RANKL-induced NO inhibition of osteoclast formation does not occur via NO activation of a cGMP pathway. Because IFN-beta is also a RANKL-induced autocrine negative feedback inhibitor that limits osteoclastogenesis, we investigated whether IFN-beta is involved in this novel RANKL/iNOS/NO autoregulatory pathway. IFN-beta was induced by RANKL and stimulated iNOS expression and NO release, and a neutralizing antibody to IFN-beta inhibited iNOS/NO elevation in response to RANKL, thereby enhancing osteoclast formation. Thus, RANKL-induced IFN-beta triggers iNOS/NO as an important negative feedback signal during osteoclastogenesis. Specifically targeting this novel autoregulatory pathway may provide new therapeutic approaches to combat various osteolytic bone diseases.  相似文献   

15.
Nitric oxide is a free radical gas, NO, of paramount relevance in biology. The enzymes responsible for the synthesis of NO from L-arginine in mammalian tissues are known as nitric oxide synthases (NOS). The inducible NOS (iNOS) is associated with the development of a number of autoimmune diseases. iNOS is induced on monocytes, cells playing a key role in the initiation and progression of the immune response. Induction of the enzyme is effected by proinflammatory cytokines, immunomodulating peptides, and even beta-endorphin through a mechanism involving an increase in cAMP. An excessive production of NO has been implicated in the severe lesions observed in multiple sclerosis (MS). Nitrosation of proteins caused by NO in monocytes may contribute to the formation of new epitopes involved in the autoimmune response. Monocytes/macrophages enhance also their cytotoxic capacity through an increase in NO. iNOS seems to establish a link between neuroendocrine and immune system through beta-endorphin explaining stress-related relapses in MS. One of the causes of demyelination is the lysis of oligodendrocytes by cytotoxic T lymphocytes (CTLs); and T cell response is also known to be modulated by NO.  相似文献   

16.
Nitric oxide (NO) and prostaglandins are produced as a result of the stimulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, respectively, in response to cytokines or lipopolysaccharide (LPS). We demonstrate that the activity of integrin-linked kinase (ILK) is stimulated by LPS activation in J774 macrophages. Inhibition of ILK activity by dominant-negative ILK or a highly selective small molecule ILK inhibitor, in epithelial cells or LPS-stimulated J774 cells and murine macrophages, resulted in inhibition of iNOS expression and NO synthesis. LPS stimulates the phosphorylation of IkappaB on Ser-32 and promotes its degradation. Inhibition of ILK suppressed this LPS-stimulated IkappaB phosphorylation and degradation. Similarly, ILK inhibition suppressed the LPS-stimulated iNOS promoter activity. Mutation of the NF-kappaB sites in the iNOS promoter abolished LPS- and ILK-mediated regulation of iNOS promoter activity. Overexpression of ILK-stimulated NF-kappaB activity and inhibition of ILK or protein kinase B (PKB/Akt) suppressed this activation. We conclude that ILK can regulate NO production in macrophages by regulating iNOS expression through a pathway involving PKB/Akt and NF-kappaB. Furthermore, we also demonstrate that ILK activity is required for LPS stimulated cyclooxygenase-2 expression in murine and human macrophages. These findings implicate ILK as a potential target for anti-inflammatory applications.  相似文献   

17.
Regulation of nitric oxide production by arginine metabolic enzymes   总被引:15,自引:0,他引:15  
Nitric oxide (NO) is synthesized from arginine by NO synthase (NOS), and the availability of arginine is one of the rate-limiting factors in cellular NO production. Citrulline, which is formed as a by-product of the NOS reaction, can be recycled to arginine by successive actions of argininosuccinate synthetase (AS) and argininosuccinate lyase (AL), forming the citrulline-NO cycle. AS and sometimes AL have been shown to be coinduced with inducible NOS (iNOS) in various cell types including activated macrophages, vascular smooth muscle cells, glial cells, neuronal PC12 cells, and pancreatic beta-cells. Cationic amino acid transporter (CAT)-2 is induced in activated macrophages but not in PC12 cells. On the other hand, arginase can downregulate NO production by decreasing intracellular arginine concentrations. iNOS and arginase activities are regulated reciprocally in macrophages by cytokines, and this may guarantee the efficient production of NO. In contrast, iNOS and arginase isoforms (type I and II) are coinduced in lipopolysaccharide (LPS)-activated macrophages. These results indicate that NO production is modulated by the uptake, recycling, and degradation of arginine.  相似文献   

18.
Helicobacter pylori infection of the stomach elicits a vigorous but ineffective host immune and inflammatory response, resulting in persistence of the bacterium for the life of the host. We have reported that in macrophages, H. pylori up-regulates inducible NO synthase (iNOS) and antimicrobial NO production, but in parallel there is induction of arginase II, generating ornithine, and of ornithine decarboxylase (ODC), generating polyamines. Spermine, in particular, has been shown to restrain immune response in activated macrophages by inhibiting proinflammatory gene expression. We hypothesized that spermine could prevent the antimicrobial effects of NO by inhibiting iNOS in macrophages activated by H. pylori. Spermine did not affect the up-regulation of iNOS mRNA levels but in a concentration-dependent manner significantly attenuated iNOS protein levels and NO production. Reduction in iNOS protein was due to inhibition of iNOS translation and not due to iNOS degradation. ODC knockdown with small interfering (si) RNA resulted in increased H. pylori-stimulated iNOS protein expression and NO production without altering iNOS mRNA levels. When macrophages were cocultured with H. pylori, killing of bacteria was enhanced by transfection of ODC siRNA and prevented by addition of spermine. These results identify a mechanism of immune dysregulation induced by H. pylori in which stimulated spermine synthesis by the arginase-ODC pathway inhibits iNOS translation and NO production, leading to persistence of the bacterium and risk for peptic ulcer disease and gastric cancer.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号