首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abnormal tau proteins (PHF-tau) were isolated from Alzheimer's disease brains by treatment of paired helical filament enriched-fractions with perchloric acid and boiling of the acid precipitable fraction with beta-mercaptoethanol. These proteins were purified further by a second perchloric acid treatment. The purified PHF-tau proteins were soluble in buffers devoid of sodium dodecyl sulfate. However, they were similar to the abnormal tau extracted from paired helical filaments with sodium dodecyl sulfate, also named A68, in molecular mass (68, 64, and 60 kDa), isoelectric point (pI 5.5-6.5), reactivity with anti-tau antibodies, and in requirement for alkaline phosphatase treatment to bind the Tau-1 antibody. Compared to normal tau, the soluble PHF-tau contained 100% more glycine and 35% less lysine residue. The results suggest that besides phosphorylation other types of modification may be involved in differentiating PHF-tau from normal tau.  相似文献   

2.
Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases.  相似文献   

3.
Alzheimer's disease: Abeta, tau and synaptic dysfunction   总被引:8,自引:0,他引:8  
Alzheimer's disease is a progressive neurodegenerative disorder that is characterized by two hallmark lesions: extracellular amyloid plaques and neurofibrillary tangles. The role that these lesions have in the pathogenesis of AD has proven difficult to unravel, in part because of unanticipated challenges of reproducing both pathologic hallmarks in transgenic mice. Recent advances in recapitulating both plaques and tangles in the brains of transgenic mice are leading to novel insights into their role in the degenerative process, including their impact on synaptic activity and plasticity. Transgenic mice that harbor both neuropathological lesions are also facilitating the elucidation of the relationship of these proteinaceous aggregates to one another and providing a crucial in vivo system for developing and evaluating therapies.  相似文献   

4.
Peptidyl‐prolyl cis/trans isomerases (PPIases), a unique family of molecular chaperones, regulate protein folding at proline residues. These residues are abundant within intrinsically disordered proteins, like the microtubule‐associated protein tau. Tau has been shown to become hyperphosphorylated and accumulate as one of the two main pathological hallmarks in Alzheimer's disease, the other being amyloid beta (Aβ). PPIases, including Pin1, FK506‐binding protein (FKBP) 52, FKBP51, and FKBP12, have been shown to interact with and regulate tau biology. This interaction is particularly important given the numerous proline‐directed phosphorylation sites found on tau and the role phosphorylation has been found to play in pathogenesis. This regulation then affects downstream aggregation and oligomerization of tau. However, many PPIases have yet to be explored for their effects on tau biology, despite the high likelihood of interaction based on proline content. Moreover, Pin1, FKBP12, FKBP52, cyclophilin (Cyp) A, CypB, and CypD have been shown to also regulate Aβ production or the toxicity associated with Aβ pathology. Therefore, PPIases directly and indirectly regulate pathogenic protein multimerization in Alzheimer's disease and represent a family rich in targets for modulating the accumulation and toxicity.

  相似文献   


5.
The stepwise progression of tau pathology [NFTs (neurofibrillary tangles) and NTs (neuropil threads)] in AD (Alzheimer's disease) is generally assumed to begin in the transentorhinal region (entorhinal stage) from which it progresses to the hippocampus (limbic stage) and to neocortical regions (neocortical stage). This stepwise progression is reflected in the NFT Braak stages. However, it has been shown recently that tau pathology is frequently seen in subcortical nuclei, in particular the LC (locus coeruleus) in over 90% of individuals under 30 years of age, suggesting that AD-associated tau pathology begins in the LC and not in the transentorhinal region. On the other hand, only minimal amounts of tau pathology are seen in the LC in cases with considerable entorhinal tau pathology, while the severity of tau pathology in the LC significantly increases with increasing NFT Braak stages. These findings suggest that the LC becomes increasingly involved during AD progression rather than representing the site initially affected. Further studies are warranted to answer the question of whether tau pathology in the LC of young individuals is associated with AD or whether it rather reflects non-specific neuronal damage.  相似文献   

6.
Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease   总被引:10,自引:0,他引:10  
In Alzheimer's disease (AD) brain, microtubule-associated protein tau is abnormally modified by hyperphosphorylation and glycosylation, and is aggregated as neurofibrillary tangles of paired helical filaments. To investigate the role of tau glycosylation in neurofibrillary pathology, we isolated various pools of tau protein from AD brain which represent different stages of tau pathology. We found that the non-hyperphosphorylated tau from AD brain but not normal brain tau was glycosylated. Monosaccharide composition analyses and specific lectin blots suggested that the tau in AD brain was glycosylated mainly through N-linkage. In vitro phosphorylation indicated that the glycosylated tau was a better substrate for cAMP-dependent protein kinase than the deglycosylated tau. These results suggest that the glycosylation of tau is an early abnormality that can facilitate the subsequent abnormal hyperphosphorylation of tau in AD brain.  相似文献   

7.
8.
9.
Choline transport and levels were studied in erythrocytes from patients with Alzheimer's disease and age-matched controls using stable isotopic tracer techniques. The mean erythrocyte choline in the Alzheimer group was 50.1 nmol ml-1 compared to 15.5 nmol ml-1 in the controls. This was significant using a Student's t test at a P of less than 0.0005. Influx of choline into the erythrocyte correlated inversely with erythrocyte choline with high significance. This study suggests that erythrocyte choline is elevated in a subset of patients with Alzheimer's disease and that the low affinity transport system is also abnormal in these patients. This abnormality of choline transport may play a role in the pathogenesis of Alzheimer's disease in some patients.  相似文献   

10.
Alzheimer's disease (AD) belongs to a group of neurodegenerative diseases collectively designated as "tauopathies", because they are characterized by the aggregation of abnormally phosphorylated tau protein. The mechanisms responsible for tau aggregation and its contribution to neurodegeneration are still unknown. Thereby, understanding the modes of regulation of tau is of high interest in the determination of the possible causes at the origin of the formation of tau aggregates and to elaborate protection strategies to cope with these pathological lesions. The regulation of tau takes place predominantly through post-translational modifications. Extensive reports have been published about tau phosphorylation; however, the other tau post-translational modifications have received much less attention. Here, we review the different types of post-translational modifications of tau including phosphorylation, glycosylation, glycation, prolyl-isomerization, cleavage or truncation, nitration, polyamination, ubiquitination, sumoylation, oxidation and aggregation, with a particular interest towards their relevance in AD.  相似文献   

11.
12.
While early 1990s reports showed the phosphorylation pattern of fetal tau protein to be similar to that of tau in paired helical filaments (PHF) in Alzheimer's disease (AD), neither the molecular mechanisms of the transient developmental hyperphosphorylation of tau nor reactivation of the fetal plasticity due to re-expression of fetal protein kinases in the aging and AD human brain have been sufficiently investigated. Here, we summarize the current knowledge on fetal tau, adding new data on the specific patterns of tau protein and mRNA expression in the developing human brain as well as on change in tau phosphorylation in the perforant pathway after entorhinal cortex lesion in mice. As fetal tau isoform does not form PHF even in a highly phosphorylated state, understanding its expression and post-translational modifications represents an important avenue for future research towards the development of AD treatment and prevention.  相似文献   

13.
14.
Neurofibrillary tangles advance from layer II of the entorhinal cortex (EC-II) toward limbic and association cortices as Alzheimer's disease evolves. However, the mechanism involved in this hierarchical pattern of disease progression is unknown. We describe a transgenic mouse model in which overexpression of human tau P301L is restricted to EC-II. Tau pathology progresses from EC transgene-expressing neurons to neurons without detectable transgene expression, first to EC neighboring cells, followed by propagation to neurons downstream in the synaptic circuit such as the dentate gyrus, CA fields of the hippocampus, and cingulate cortex. Human tau protein spreads to these regions and coaggregates with endogenous mouse tau. With age, synaptic degeneration occurs in the entorhinal target zone and EC neurons are lost. These data suggest that a sequence of progressive misfolding of tau proteins, circuit-based transfer to new cell populations, and deafferentation induced degeneration are part of a process of tau-induced neurodegeneration.  相似文献   

15.
M E King  V Ahuja  L I Binder  J Kuret 《Biochemistry》1999,38(45):14851-14859
The mechanism through which arachidonic acid induces the polymerization of tau protein into filaments under reducing conditions was characterized through a combination of fluorescence spectroscopy and electron microscopy. Results show that polymerization follows a ligand-mediated mechanism, where binding of arachidonic acid is an obligate step preceding tau-tau interaction. Homopolymerization begins with rapid (on the order of seconds) nucleation, followed by a slower elongation phase (on the order of hours). Although essentially all synthetic filaments have straight morphology at early time points, they interact with thioflavin-S and monoclonal antibody Alz50 much like authentic paired helical filaments, suggesting that the conformation of tau protein is similar in the two filament forms. Over a period of days, synthetic straight filaments gradually adopt paired helical morphology. These results define a novel pathway of tau filament formation under reducing conditions, where oxidation may contribute to final paired helical morphology, but is not a necessary prerequisite for efficient nucleation or elongation of tau filaments.  相似文献   

16.
Sato Y  Naito Y  Grundke-Iqbal I  Iqbal K  Endo T 《FEBS letters》2001,496(2-3):152-160
In a previous study [Wang et al. (1996) Nat. Med. 2, 871-875], Wang et al. found (i) that abnormally hyperphosphorylated tau (AD P-tau) isolated from Alzheimer's disease (AD) brain as paired helical filaments (PHF)-tau and as cytosolic AD P-tau but not tau from normal brain were stained by lectins, and (ii) that on in vitro deglycosylation the PHF untwisted into sheets of thin straight filaments, suggesting that tau only in AD brains is glycosylated. To elucidate the primary structure of N-glycans, we comparatively analyzed the N-glycan structures obtained from PHF-tau and AD P-tau. More than half of N-glycans found in PHF-tau and AD P-tau were different. High mannose-type sugar chains and truncated N-glycans were found in both taus in addition to a small amount of sialylated bi- and triantennary sugar chains. More truncated glycans were richer in PHF-tau than AD P-tau. This enrichment of more truncated glycans in PHF might be involved in promoting the assembly and or stabilizing the pathological fibrils in AD.  相似文献   

17.
The diagnosis of AD is still largely based on exclusion criteria of secondary causes and other forms of dementia with similar clinical pictures, than the diagnostic accuracy of AD is low. Improved methods of early diagnosis are needed, particularly because drugs treatment is more effective in the early stages of the disease. Recent research focused the attention to biochemical diagnostic markers (biomarkers) and according to the proposal of a consensus group on biomarkers, three candidate CSF markers reflecting the pathological AD processes, have recently been identified: total tau protein (t-tau), amyloid beta(1-42) protein (A beta42), and tau protein phosphorylated at AD-specific epitopes (p-tau). Several articles report reduced CSF levels of A beta42 and increased CSF levels of t-tau and p-tau in AD; the sensitivity and specificity of these data are able for discrimination of AD patients from controls. However, the specificity for other dementias is low. According to the literature analysis reported in the present review, we can conclude that the combination of the CSF markers and their ratios may significantly increase the specificity and the accuracy of AD diagnosis.  相似文献   

18.
19.
Antisera to paired helical filaments (PHF) were found to contain a significant amount of tau antibodies specific for a phosphorylated form, but only a negligible amount of those specific for a non-phosphorylated form. Also, the phosphorylated tau-specific antibodies, but not the non-phosphorylated tau-specific ones, labeled neurofibrillary tangles isolated in the presence of sodium dodecyl sulfate (SDS) and stained both tangles and senile plaque neuritis in fixed tissue sections in a very similar way to as the whole antiserum did. Taken together, these results strongly suggest that a major antigenic determinant of PHF is phosphorylated tau itself.  相似文献   

20.
cis-trans isomerization of proteins phosphorylated by proline-directed kinases is proposed to control numerous signaling molecules and is implicated in the pathogenesis of Alzheimer's and other diseases. However, there is no direct evidence for the existence of cis-trans protein isomers in?vivo or for their conformation-specific function or regulation. Here we develop peptide chemistries that allow the generation of cis- and trans-specific antibodies and use them to raise antibodies specific for isomers of phosphorylated tau. cis, but not trans, p-tau appears early?in the brains of humans with mild cognitive impairment, accumulates exclusively in degenerated neurons, and localizes to dystrophic neurites during Alzheimer's progression. Unlike trans p-tau, the cis isomer cannot promote microtubule assembly, is more resistant to dephosphorylation and degradation, and is more prone to aggregation. Pin1 converts cis to trans p-tau to prevent Alzheimer's tau pathology. Isomer-specific antibodies and vaccines may therefore have value for the early diagnosis and treatment of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号