首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Obligatory thermogenesis is a necessary accompaniment of all metabolic processes involved in maintenance of the body in the living state, and occurs in all organs. It includes energy expenditure involved in ingesting, digesting, and processing food (thermic effect of food (TEF]. At certain life stages extra energy expenditure for growth, pregnancy, or lactation would also be obligatory. Facultative thermogenesis is superimposed on obligatory thermogenesis and can be rapidly switched on and rapidly suppressed by the nervous system. Facultative thermogenesis is important in both thermal balance, in which control of thermoregulatory thermogenesis (shivering in muscle, nonshivering in brown adipose tissue (BAT] balances neural control of heat loss mechanisms, and in energy balance, in which control of facultative thermogenesis (exercise-induced in muscle, diet-induced thermogenesis (DIT) in BAT) balances control of energy intake. Thermal balance (i.e., body temperature) is much more stringently controlled than energy balance (i.e., body energy stores). Reduced energy expenditure for thermogenesis is important in two types of obesity in laboratory animals. In the first type, deficient DIT in BAT is a prominent feature of altered energy balance. It may or may not be associated with hyperphagia. In a second type, reduced cold-induced thermogenesis in BAT as well as in other organs is a prominent feature of altered thermal balance. This in turn results in altered energy balance and obesity, exacerbated in some examples by hyperphagia. In some of the hyperphagic obese animals it is likely that the exaggerated obligatory thermic effect of food so alters thermal balance that BAT thermogenesis is suppressed. In all obese animals, deficient hypothalamic control of facultative thermogenesis and (or) food intake is implicated.  相似文献   

2.
A recent hypothesis considers brown adipose tissue (BAT) to be an important source of diet-induced thermogenesis (DIT). In turn, DIT and thermogenesis in general are believed to be key factors in the control of obesity of laboratory rodents. This hypothesis was developed from the study of single gene mutant obese rodents. The present research tested this hypothesis in mice with polygenic control of growth and obesity, which is more characteristic of the type of genetic variation expected in human and other mammalian populations. Control and high fat diets were used to test responses of five genetically selected lines of mice showing different patterns of growth and obesity. All lines deposited more fat on the high fat diet, but the most obese line showed the largest increase in BAT and the lipid-free dry (LFD) component of BAT. Use of LFD per unit body weight gave results which supported the hypothesis being tested, but it was argued that this measure is misleading. When brown and white adipose tissue growth relative to body weight were examined, 2 of the 10 line-diet groups showed alterations in BAT growth patterns. However, it was concluded that BAT, if involved at all, was not a major factor in growth and obesity differences.  相似文献   

3.
4.
The incidence of the metabolic syndrome has reached epidemic levels in the Western world. With respect to the energy balance, most attention has been given to reducing energy (food) intake. Increasing energy expenditure is an important alternative strategy. Facultative thermogenesis, which is the increase in energy expenditure in response to cold or diet, may be an effective way to affect the energy balance. The recent identification of functional brown adipose tissue (BAT) in adult humans promoted a renewed interest in nonshivering thermogenesis (NST). The purpose of this review is to highlight the recent insight in NST, general aspects of its regulation, the major tissues involved, and its metabolic consequences. Sustainable NST in adult humans amounts to 15% of the average daily energy expenditure. Calculations based on the limited available literature show that BAT thermogenesis can amount to 5% of the basal metabolic rate. It is likely that at least a substantial part of NST can be attributed to BAT, but it is possible that other tissues contribute to NST. Several studies on mitochondrial uncoupling indicate that skeletal muscle is another potential contributor to facultative thermogenesis in humans. The general and synergistic role of the sympathetic nervous system and the thyroid axis in relation to NST is discussed. Finally, perspectives on BAT and skeletal muscle NST are given.  相似文献   

5.
Orexin (OX) neuropeptides stimulate feeding and arousal. Deficiency of orexin is implicated in narcolepsy, a disease associated with obesity, paradoxically in the face of reduced food intake. Here, we show that obesity in orexin-null mice is associated with impaired brown adipose tissue (BAT) thermogenesis. Failure of thermogenesis in OX-null mice is due to inability of brown preadipocytes to differentiate. The differentiation defect in OX-null neonates is circumvented by OX injections to OX-null dams. In?vitro, OX, triggers the full differentiation program in mesenchymal progenitor stem cells, embryonic fibroblasts and brown preadipocytes via p38 mitogen activated protein (MAP) kinase and bone morphogenetic protein receptor-1a (BMPR1A)-dependent Smad1/5 signaling. Our study suggests that obesity associated with OX depletion is linked to brown-fat hypoactivity, which leads to dampening of energy expenditure. Thus, orexin plays an integral role in adaptive thermogenesis and body weight regulation via effects on BAT differentiation and function.  相似文献   

6.
7.
Brown adipose tissue (BAT) is a key tissue for energy expenditure via fat and glucose oxidation for thermogenesis. In this study, we demonstrate that the myostatin/activin receptor IIB (ActRIIB) pathway, which serves as an important negative regulator of muscle growth, is also a negative regulator of brown adipocyte differentiation. In parallel to the anticipated hypertrophy of skeletal muscle, the pharmacological inhibition of ActRIIB in mice, using a neutralizing antibody, increases the amount of BAT without directly affecting white adipose tissue. Mechanistically, inhibition of ActRIIB inhibits Smad3 signaling and activates the expression of myoglobin and PGC-1 coregulators in brown adipocytes. Consequently, ActRIIB blockade in brown adipose tissue enhances mitochondrial function and uncoupled respiration, translating into beneficial functional consequences, including enhanced cold tolerance and increased energy expenditure. Importantly, ActRIIB inhibition enhanced energy expenditure only at ambient temperature or in the cold and not at thermoneutrality, where nonshivering thermogenesis is minimal, strongly suggesting that brown fat activation plays a prominent role in the metabolic actions of ActRIIB inhibition.  相似文献   

8.
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.  相似文献   

9.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

10.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue(WAT) or brown adipose tissue(BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brownlike adipocytes were discovered in WAT. These brownlike adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expressionpattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation(adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

11.
12.
Hypothalamic inflammation and dysfunction are common features of experimental obesity. An imbalance between caloric intake and energy expenditure is generated as a consequence of this inflammation, leading to the progressive increase of body adiposity. Thermogenesis, is one of the main functions affected by obesity-linked hypothalamic dysfunction and the complete characterization of the mechanisms involved in this process may offer new therapeutic perspectives for obesity. The brown adipose tissue is an important target for hypothalamic action in thermogenesis. This tissue has been thoroughly studied in rodents and hibernating mammals; however, until recently, its advocated role in human thermogenesis was neglected due to the lack of substantial evidence of its presence in adult humans. The recent demonstration of the presence of functional brown adipose tissue in adult humans has renovated the interest in this tissue. Here, we review some of the work that shows how inflammation and dysfunction of the hypothalamus can control brown adipose tissue activity and how this can impact on whole body thermogenesis and energy expenditure.  相似文献   

13.
The discovery of metabolically active brown adipose tissue (BAT) in adult humans has fuelled the research of diverse aspects of this previously neglected tissue. BAT is solely present in mammals and its clearest physiological role is non‐shivering thermogenesis, owing to the capacity of brown adipocytes to dissipate metabolic energy as heat. Recently, a number of other possible functions have been proposed, including direct regulation of glucose and lipid homeostasis and the secretion of a number of factors with diverse regulatory actions. Herein, we review recent advances in general biological knowledge of BAT and discuss the possible implications of this tissue in human metabolic health. In particular, we confront the claimed thermogenic potential of BAT for human energy balance and body mass regulation, mostly based on animal studies, with the most recent quantifications of human BAT.  相似文献   

14.
Chao PT  Yang L  Aja S  Moran TH  Bi S 《Cell metabolism》2011,13(5):573-583
Hypothalamic neuropeptide Y (NPY) has been implicated in control of energy balance, but the physiological importance of NPY in the dorsomedial hypothalamus (DMH) remains unclear. Here we report that knockdown of NPY expression in the DMH by adeno-associated virus-mediated RNAi reduced fat depots in rats fed regular chow and ameliorated high-fat diet-induced hyperphagia and obesity. DMH NPY knockdown resulted in development of brown adipocytes in inguinal white adipose tissue through the sympathetic nervous system. This knockdown increased uncoupling protein 1 expression in both inguinal fat and interscapular brown adipose tissue (BAT). Consistent with the activation of BAT, DMH NPY knockdown increased energy expenditure and enhanced the thermogenic response to a cold environment. This knockdown also increased locomotor activity, improved glucose homeostasis, and enhanced insulin sensitivity. Together, these results demonstrate critical roles of DMH NPY in body weight regulation through affecting food intake, body adiposity, thermogenesis, energy expenditure, and physical activity.  相似文献   

15.
《Tissue & cell》2016,48(5):452-460
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.  相似文献   

16.
肥胖已经成为威胁人类健康的全球性问题,棕色脂肪(Brown adipose tissue,BAT)及米色脂肪因其能够通过产热作用增加能量消耗这一特性,已成为一种备受关注的潜在肥胖治疗方法。近年来的研究发现M2型巨噬细胞(Alternatively activated macrophages,M2 type)能够促进BAT产热和白色脂肪(White adipose tissue,WAT)的棕色化(即米色脂肪的形成过程),但随后的一些研究却得到了相反的结论。到目前为止,M2型巨噬细胞是否参与促进WAT的棕色化过程仍是一个备受争议的话题。主要对M2型巨噬细胞、II型固有淋巴细胞(Type 2 Innate Lymphoid Cells,ILC2s)和嗜酸性粒细胞(Eosinophils)对BAT产热和WAT的棕色化的促进作用,以及M2型巨噬细胞不参与/抑制WAT棕色化这两个方面的研究状况做一综述。  相似文献   

17.
The energy expending and glucose sink properties of brown adipose tissue (BAT) make it an attractive target for new obesity and diabetes treatments. Despite decades of research, only recently have mechanistic studies started to provide a more complete and consistent picture of how activated brown adipocytes handle glucose. Here, we discuss the importance of intracellular glycolysis, lactate production, lipogenesis, lipolysis, and beta‐oxidation for BAT thermogenesis in response to natural (temperature) and artificial (pharmacological and optogenetic) forms of sympathetic nervous system stimulation. It is now clear that together, these metabolic processes in series and in parallel flexibly power ATP‐dependent and independent futile cycles in brown adipocytes to impact on whole‐body thermal, energy, and glucose balance.  相似文献   

18.
Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT.  相似文献   

19.
繁殖和运动对小型兽类褐色脂肪组织产热的影响   总被引:1,自引:0,他引:1  
综述了近年来国内外9学者对小型兽类的繁殖、运动与能量平衡和褐色脂肪组织(BAT)产热关系的研究,大多数学者认为繁殖(尤其是哺乳)和运动能促进动物摄食量的增加,而降低BAT产热。这说明小型兽类为满足繁殖和运动过程中高能量的需求,除了大幅度增加能量摄入之入,还采取降低BAT产热以节约非哺乳能量消耗的策略。  相似文献   

20.
In this review it is considered up-to date researches of different forms of non-shivering thermogenesis that related to thermoregulatory and substrate homeostasis. Term "homeostatic non-shivering thermogenesis (HNST)" is proposed for explanation of facultative heat production stimulated by cold exposure, food intake and accumulation of lactate during intensive muscle load. There are common and different features of physiological activity displayed in three HNST types. Existence of these common points gets a probability to propose general physiological mechanisms of HNST realization. Between other candidates for HNST location brown adipose tissue (BAT) has real unquestionable advantage for this specific function. There is close relationship between thermogenic function in cold environment and diet-induced thermogenesis that allows to link two HNST types and BAT activity together. Here we present data indirectly confirming BAT functioning in processes of homeostatic normalization not due to cold acclimation or food intake. Also we give consideration to new data about BAT functional activity, its topographic body location, mechanisms of uncoupled respiration in different tissues in adult humans and methods of BAT diagnostics which include molecular marker using. We adduce a number of facts confirming our suggestion about BAT activity can be related to homeostatic normalization after physical load. At last, we bring forward experimental research program for examination of our hypothesis about BAT universal homeostatic function in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号