首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PADGEM (platelet activation-dependent granule-external membrane protein) is a leukocyte receptor of activated platelets that mediates cellular adhesion of platelets to neutrophils and monocytes. To identify the natural ligand on neutrophils and monocytes that interacts with PADGEM, we have evaluated anti-leukocyte antibodies for their ability to block leukocyte-PADGEM binding. Only anti-CD15 antibodies were able to inhibit the binding of neutrophils, monocytes, HL60 cells, and U937 cells to platelets. Anti-CD15 antibodies inhibited the binding of U937 cells to PADGEM-expressing COS cells and to purified PADGEM incorporated into phospholipid vesicles. The CD15 antigen, lacto-N-fucopentaose III (Gal beta 1----4[Fuc alpha 1----3]NAcGlc beta 1----3Gal-beta 1----4Glc), inhibited the interaction of neutrophils or HL60 cells with platelets, whereas lacto-N-fucopentaose I did not; lacto-N-fucopentaose II demonstrated minimal inhibition. Lacto-N-fucopentaose III, and to a lesser extent lacto-N-fucopentaose II, but not lacto-N-fucopentaose I, inhibited the interaction of HL60 cells with COS cells transfected with PADGEM cDNA. CD15, lacto-N-fucopentaose III or Lex, is a component of the PADGEM ligand on neutrophils and monocytes.  相似文献   

2.
The G(i)-coupled P2Y(14) receptor (P2Y(14)-R) is potently activated by UDP-sugars and UDP. Although P2Y(14)-R mRNA is prominently expressed in circulating neutrophils, the signaling pathways and functional responses associated with this receptor are undefined. In this study, we illustrate that incubation of isolated human neutrophils with UDP-glucose resulted in cytoskeleton rearrangement, change of cell shape, and enhanced cell migration. We also demonstrate that UDP-glucose promotes rapid, robust, and concentration-dependent activation of RhoA in these cells. Ecto-nucleotidases expressed on neutrophils rapidly hydrolyzed extracellular ATP, but incubation with UDP-glucose for up to 1 h resulted in negligible metabolism of the nucleotide-sugar. HL60 human promyelocytic leukemia cells do not express the P2Y(14)-R, but neutrophil differentiation of HL60 cells with DMSO resulted in markedly enhanced P2Y(14)-R expression. Accordingly, UDP-glucose, UDP-galactose, and UDP-N-acetylglucosamine promoted Rho activation in differentiated but not in undifferentiated HL60 cells. Stable expression of recombinant human P2Y(14)-R conferred UDP-sugar-promoted responses to undifferentiated HL60 cells. UDP-glucose-promoted RhoA activation also was accompanied by enhanced cell migration in differentiated HL60 cells, and these responses were blocked by Rho kinase inhibitors. These results support the notion that UDP-glucose is a stable and potent proinflammatory mediator that promotes P2Y(14)-R-mediated neutrophil motility via Rho/Rho kinase activation.  相似文献   

3.
A novel sterol mesylate compound (NSC67657) was recently identified and reported by National Cancer Institute that could efficiently induce the differentiation of HL60 cells into monocytes in vitro and in vivo. The expression of many proteins would have been changed during the differentiation process, and some proteins may have played key roles in the differentiation of HL60 cell line induced by this drug. Therefore, we treated HL60 cells with NSC67657 and all‐trans retinoic acid (ATRA) to identify the differentially expressed proteins and determine their functions in cellular differentiation. Of the 45 differentially expressed protein spots investigated, 24 were either elevated or decreased in both the monocytic and granulocytic differentiating HL60 cells, 8 showed significant changes only when induced by NSC67657, and 13 showed significant changes only when induced by ATRA. After verification by RT‐PCR, Western blotting, and immunocytochemistry, only the protein ICAT was found to be elevated by NSC67657 treatment alone. Although the over‐expression of ICAT is not sufficient to induce the differentiation of HL60 cells into monocytes, it did increase the proportion of CD14+ cells in cells pretreated with NSC67657. Successful application of multiple techniques including two‐dimensional gel electrophoresis, matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry, Western blotting, and eukaryotic electroporation revealed that proteomic and molecular biological analyses provide valuable tools in drug development research. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Intestinal macrophages (IMAC) are a central component in the defense of the intestinal mucosa against luminal microbes. In normal mucosa, monocytes differentiate to immunologically tolerant IMAC with a typical phenotype lacking activation markers such as CD14 and TLRs 2 and 4. CD33+ IMAC were isolated from normal intestinal mucosa by immunomagnetic beads. A subtractive hybridization subtracting mRNA from normal IMAC from those of in vitro differentiated macrophages was performed. IMAC differentiation was studied in multicellular spheroids (MCS). Functional assays on migration of CD45R0+ T cells were performed in MCS coculture models. Of 76 clones, 3 obtained by subtractive mRNA hybridization showed >99% homology to mRNA of MIP-3alpha, indicating that this chemokine is induced in IMAC compared with in vitro differentiated macrophages. MIP-3alpha protein expression was confirmed in cryostat sections of normal intestinal mucosa by immunohistochemistry. IMAC in the lamina propria stained positive for MIP-3alpha. FACS of purified IMAC clearly indicated expression of MIP-3alpha in these cells. In the MCS-in vitro differentiation model for IMAC, MIP-3alpha protein expression was absent on day 1 but detectable on day 7 of coculture, demonstrating the induction of MIP-3alpha during differentiation of IMAC. IMAC attracted CD45R0+ T cells to migrate into an MCS coculture model. In human mucosa, a close contact between IMAC and CD45R0+ T cells could be demonstrated. MIP-3alpha is induced during the differentiation of monocytes into IMAC. Our data suggest that MIP-3alpha expression could be involved in the recruitment of CD45R0+ cells into the lamina propria.  相似文献   

6.
The release of the reactive oxygen species that accompanies the oxidative burst was studied in HL60 cells differentiated with either dimethylsulphoxide, butyrate or phorbol myristate acetate in order to establish the extent to which differentiated cells are phenotypically similar to human neutrophils, monocytes and macrophages. When phorbol myristate acetate was used as a stimulus, the rates of superoxide production by dimethylsulphoxide and butyrate differentiated HL60 cells was not significantly different from those observed in neutrophils and monocytes isolated from normal peripheral blood. Similar results were obtained when luminol-dependent chemiluminescence was measured in the presence of horseradish peroxidase using phorbol myristate acetate as the stimulus. However, in the absence of horseradish peroxidase, the luminol-dependent chemiluminescence in the dimethylsulphoxide and butyrate-differentiated HL60 cells was significantly lower than that of the control cells isolated from human blood, reflecting the absence of myeloperoxidase in the differentiated cells. In contrast, HL60 cells differentiated by phorbol myristate acetate failed to show any increased generation of superoxide or luminol-dependent chemiluminescence upon stimulation. Impaired release of lysosomal enzymes by the chemically differentiated cells suggests impairments in the extent of differentiation resulting in cells with defective azurophilic degranulation processes. It is concluded that HL60 cells differentiated by the above agents are somewhat controversial models of promyelocyte differentiation into typical neutrophilic, monocytic and macrophage-like cells.  相似文献   

7.
Caseins are major constituents of mammalian milks that are thought to be exclusively expressed in mammary glands and to function primarily as a protein source, as well as to ameliorate intestinal calcium uptake. In addition, proinflammatory and immunomodulatory properties have been reported for bovine caseins. Our aim was to investigate whether human casein α s1 (CSN1S1) is expressed outside the mammary gland and possesses immunomodulatory functions in humans as well. For this purpose, CSN1S1 mRNA was detected in primary human monocytes and CD4(+) and CD8(+) T cells, but not in CD19(+) B cells. CSN1S1 protein was traceable in supernatants of cultured primary human CD14(+) monocytes by ELISA. Similarly, CSN1S1 mRNA and protein were detected in the human monocytic cell lines HL60, U937, and THP1 but not in Mono Mac 6 cells. Moreover, permeabilized human monocytes and HL60 cells could be stained by immunofluorescence, indicating intracellular expression. Recombinant human CSN1S1 was bound to the surface of Mono Mac 6 cells and upregulated the expression of GM-CSF mRNA in primary human monocytes and Mono Mac 6 cells in a time- and concentration-dependent manner. A similar increase in GM-CSF protein was found in the culture supernatants. CSN1S1-dependent upregulation of GM-CSF was specifically blocked by the addition of the p38 MAPK inhibitor ML3403. Our results indicated that human CSN1S1 may possess an immunomodulatory role beyond its nutritional function in milk. It is expressed in human monocytes and stimulates the expression of the proinflammatory cytokine GM-CSF.  相似文献   

8.
9.
The cell differentiation‐inducing effect of 2‐N,N‐diethylaminocarbonyloxymethyl‐1 ‐diphenylmethyl‐4‐(3,4,5‐trimethoxybenzoyl) piperazine, hydrochloride (PMS‐1077) was determined in human leukaemic HL‐60 cells with profiling of cell proliferation, analysis of cell cycling, characterization of expression of various CD molecules and determination of phagocytotic activity of differentiated HL‐60 cells. After treatment with PMS‐1077, HL‐60 cells exhibited a decreased cell viability during which cell cycle was arrested in G0‐/G1‐phase. Flow cytometric analysis showed CD11b and CD14 were up‐regulated, whereas CD15 was unaffected. Together with the finding that PMS‐1077‐treated HL‐60 cells exhibited activities of differentiation by examining their ability of phagocytosing latex beads, an antiproliferative effect and a differentiation‐inducing role were determined for PMS‐1077 in HL‐60 cells.  相似文献   

10.
By high density oligonucleotide microarrays we have studied the expression profile of proliferating and VD treated HL60 cells and the molecular phenotype of VD monocytes and that of CD14+ peripheral monocytes has been compared. The results indicate that important changes in functional categories of the differentially expressed genes underlie the differentiation transition from myeloblasts to monocytes. This differential gene expression pattern leads to an increased expression of mRNAs involved in surface and external activities since many of the VD induced genes belong to ligand binding, receptors, cell surface antigens, defense/immunity and adhesion molecules functional categories. The results also indicate that the molecular phenotypes of monocytes and VD induced cells diverge for a small but significant set of defense related genes. Particularly, class II MHC genes are not expressed in these cells. Furthermore, the high levels of expression of these genes induced by serum treatment of monocytes are decreased by VD.  相似文献   

11.
1. After hypotonic treatment spermatozoa have metabolic characteristics of mitochondria isolated from other cells. Ejaculated boar spermatozoa treated in this way can oxidise external NADH via both a lactate-pyruvate shuttle and a malate-aspartate cycle; this oxidation is coupled to the phosphorylation of ADP. 2. The dicarboxylate transport inhibitors butylmalonate, phenylsuccinate and bathophenanthroline sulphonate inhibit NADH oxidation dependent on added malate, glutamate and aspartate. alpha-Cyanocinnamate, a strong inhibitor of pyruvate transport, inhibits lactate-dependent NADH oxidation. 3. NADH oxidation dependent on malate, glutamate and aspartate is inhibited by uncoupling agents, but lactate-dependent NADH oxidation is stimulated. 4. Lactate-dependent NADH oxidation is inhibited by oxamate, an inhibitor of lactate dehydrogenase. Aminooxyacetate, an aminotransferase inhibitor, inhibits glutamate, malate and aspartate-dependent NADH oxidation. 5. Hypotonically-treated spermatozoa retain radioactivity after incubation with L-[U-14C]malate, [1,5-14C]citrate or [2-14C]malonate. Exchanges of retained radioactivity with various substrates indicate that dicarboxylate and tricarboxylate exchange carriers exist in the mitochondrial membrane.  相似文献   

12.
[3H]Inositol uptake by HL60 cells was measured during DMSO-induced differentiation towards neutrophils. The values for Km (53.2 microM) and Vmax (5.3 pmol/min per 10(6) cells) obtained for control HL60 cells are in good agreement with previously published figures for this cell line. Inositol transport into HL60 cells was an active, saturable and specific process which was unaffected by extracellular glucose concentrations. Inositol transport rates changed during DMSO-induced differentiation of HL60 cells towards neutrophils. An increase in inositol transport rates occurred during the first 4 days of exposure to 0.9% DMSO and was concommitant with the period leading to growth arrest and prior to the acquisition of the differentiated phenotype. These changes preceded the rise in intracellular inositol concentration from 10.9 to 132.7 microM seen between day 1 and day 5. After 4 days exposure to DMSO the rate of inositol transport fell to a value of 3.2 +/- 0.3 pmol/min per 10(6) cells at day 7, this was accompanied by a small reduction in intracellular inositol from a peak value of 132.7 to 112 microM. The inositol transport rate, thus, appears to closely accompany changes in the intracellular concentration of inositol. Inositol transport in human peripheral blood neutrophils was an order of magnitude slower than the value for uninduced HL60 cells, but the Km for inositol transport was similar in both cell types and was unchanged during HL60 differentiation. This suggests that changes in inositol transport rate are achieved by the modulation of a commonly expressed inositol transporter, one consequence of which is the alteration of intracellular inositol concentrations.  相似文献   

13.
We previously reported an induction of 15-hydroxyprostaglandin dehydrogenase type I mRNA (15-PGDH) expression accompanied by a decrease in prostaglandin E2(PGE2) levels during cord blood monocytes differentiation into preosteoclastic cells by 1,25 dihydroxyvitamin D3 (1,25 (OH)2D3). These results suggested a role of prostaglandin (PG) enzymes in adhesion and/or differentiation of monocytes.In the present work, we studied modulation of gene expression of PG metabolism enzymes mRNAs in HL60 cells differentiated by phorbol myristate acetate (PMA) into the monocyte/macrophage lineage. We showed that adhesion of HL60 induced by PMA causes an increase of cyclooxygenase 2 (COX 2) and 15-PGDH mRNAs. When adding indomethacin, a non steroidal antiinflammatory drug known to inhibit COX activity, the cells remained attached and expressed large amounts of 15-PGDH mRNA while COX 2 mRNA expression remained unchanged. Indomethacin, in association with PMA can consequently exert a dual control on key enzymes of PGE2 metabolism without modifying adhesion of the cells.  相似文献   

14.
Dental papilla cells (DPCs) belong to precursor cells differentiating to odontoblasts and play an important role in dentin formation and reproduction. This study aimed to explore the changes and and involvement of mitochondrial respiratory function during odontogenic differentiation. Primary DPCs were obtained from first molar dental papilla of neonatal rats and cultured in odontogenic medium for 7, 14, 21 days. DPCs, which expressed mesenchymal surface markers CD29, CD44 and CD90, had the capacity for self-renewal and multipotent differentiation. Odontoblastic induction increased mineralized matrix formation in a time-dependent manner, which was accompanied by elevated alkaline phosphatase (ALP), dentin sialophosphoprotein and dentin matrix protein 1 expression at mRNA and protein levels. Notably, odontogenic medium led to an increase in adenosine-5′-triphosphate content and mitochondrial membrane potential, whereas a decrease in intercellular reactive oxygen species production and NAD+/NADH ratio. Furthermore, odontogenic differentiation was significantly suppressed by treatment with rotenone, an inhibitor of mitochondrial respiratory chain. These results demonstrate that enhanced mitochondrial function is crucial for odontogenic differentiation of DPCs.  相似文献   

15.
Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the second-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we demonstrate that radotinib significantly decreases the viability of AML cells in a dose-dependent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP-1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi-1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radotinib promoted differentiation and induced CD11b expression in AML cells by downregulating LYN. However, CD11b expression induced by ATRA in HL60 cells was decreased by radotinib through upregulation of LYN. Furthermore, radotinib mainly induced apoptosis of CD11b+ cells in the total population of AML cells. Radotinib also increased apoptosis of CD11b+ HL60 cells when they were differentiated by ATRA/dasatinib treatment. We show that radotinib induced apoptosis via caspase-3 activation and the loss of mitochondrial membrane potential (ΔΨm) in CD11b+ cells differentiated from AML cells. Our results suggest that radotinib may be used as a candidate drug in AML or a chemosensitizer for treatment of AML by other therapeutics.  相似文献   

16.
Retinoic acid is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing maturation in leukemia cells. Using HL60 model human myeloid leukemia cells, where all-trans retinoic acid (RA) induces granulocytic differentiation, we developed two emergent RA-resistant HL60 cell lines which are characterized by loss of RA-inducible G1/G0 arrest, CD11b expression, inducible oxidative metabolism and p47phox expression. However, RA-treated RA-resistant HL60 continue to exhibit sustained MEK/ERK activation, and one of the two sequentially emergent resistant lines retains RA-inducible CD38 expression. Other signaling events that define the wild-type (WT) response are compromised, including c-Raf phosphorylation and increased expression of c-Cbl, Vav1, and the Src-family kinases (SFKs) Lyn and Fgr. As shown previously in WT HL60 cells, we found that the SFK inhibitor PP2 significantly increases G1/G0 cell cycle arrest, CD38 and CD11b expression, c-Raf phosphorylation and expression of the aforementioned regulators in RA-resistant HL60. The resistant cells were potentially incapable of developing inducible oxidative metabolism. These results motivate the concept that RA resistance can occur in steps, wherein growth arrest and other differentiation events may be recovered in both emergent lines. Investigating the mechanistic anomalies in resistant cell lines is of therapeutic significance and helps to mechanistically understand the response to retinoic acid’s biological effects in WT HL60 cells.  相似文献   

17.
Cell surface oxygen consumption by mitochondrial gene knockout cells   总被引:4,自引:0,他引:4  
Mitochondrial gene knockout (rho(0)) cells that depend on glycolysis for their energy requirements show an increased ability to reduce cell-impermeable tetrazolium dyes by electron transport across the plasma membrane. In this report, we show for the first time, that oxygen functions as a terminal electron acceptor for trans-plasma membrane electron transport (tPMET) in HL60rho(0) cells, and that this cell surface oxygen consumption is associated with oxygen-dependent cell growth in the absence of mitochondrial electron transport function. Non-mitochondrial oxygen consumption by HL60rho(0) cells was extensively inhibited by extracellular NADH and NADPH, but not by NAD(+), localizing this process at the cell surface. Mitochondrial electron transport inhibitors and the uncoupler, FCCP, did not affect oxygen consumption by HL60rho(0) cells. Inhibitors of glucose uptake and glycolysis, the ubiquinone redox cycle inhibitors, capsaicin and resiniferatoxin, the flavin centre inhibitor, diphenyleneiodonium, and the NQO1 inhibitor, dicoumarol, all inhibited oxygen consumption by HL60rho(0) cells. Similarities in inhibition profiles between non-mitochondrial oxygen consumption and reduction of the cell-impermeable tetrazolium dye, WST-1, suggest that both systems may share a common tPMET pathway. This is supported by the finding that terminal electron acceptors from both pathways compete for electrons from intracellular NADH.  相似文献   

18.
19.
In this study, phorbol‐12‐myristate‐13‐acetate (PMA) at low concentrations (<10 nM; L‐PMA) induces the differentiation of CD14+ monocytes into monocyte‐derived macrophages (MDMs) while PMA at high concentrations (>100 nM; H‐PMA) causes the apoptosis of these cells. The pre‐treatment with Go6976 (a PKC‐α/β1 selective inhibitor), not anilinemonoindolylmaleimide [a PKC‐β inhibitor (PKC‐β inh.)], significantly (P < 0.05) reduces the L‐PMA‐induced generation of MDMs in the cultured CD14+ monocytes. On the other hand, either of the above two PKC inhibitors is capable of suppressing the H‐PMA‐induced apoptosis of CD14+ monocytes. However, only the inclusion of PKC‐β inh., not Go6976, prevents the cells from serum deprivation‐induced cell apoptosis. Although the membrane translocation of conventional PKC‐α, β1, and β2 isoforms was observed in the H‐PMA‐treated CD14+ monocytes, only PKC‐β2 exhibits a mitochondrial translocation activity among those PKCs responsive to H‐PMA treatment. Moreover, the activation of DEVD‐dependent caspases (DEVDase) was also detected in the H‐PMA‐treated CD14+ monocytes, indicating the involvement of a caspase‐dependent signaling pathway in the H‐PMA‐induced cell apoptosis of CD14+ monocytes. Together with our previous findings that the selective activation of PKC‐α or PKC‐β1 induces the differentiation of CD14+ monocytes into MDMs or dendritic cells (MoDCs), respectively, the results in this study further demonstrate that PKC‐β2 activation is responsible for relaying the apoptotic signal to intrinsic mitochondria‐dependent caspase signaling cascades in the CD14+ monocytes. It is likely that the selective activation of specific PKC isoforms provides a new strategy to manipulate the differential cell fate commitment of multipotent CD14+ monocytes towards apoptosis or differentiation into MDMs, MoDCs, and other cell types. J. Cell. Physiol. 226: 122–131, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
HL60 cells were adapted to grow in a serum-free medium containing 1 mg l-1 inositol, in which they differentiated normally towards neutrophils (in 0.9% by volume dimethylsulphoxide) and towards monocytes (in 10 nM phorbol myristate acetate). Cells that had been equilibrium-labelled with [2-3H]myo-inositol contained a complex pattern of inositol metabolites, several of which were at relatively high concentrations. These included InsP5 and InsP6, which were present at concentrations of about 25 microM and 60 microM, respectively. Striking and different changes occurred in the levels of some of the inositol polyphosphates as the cells differentiated towards either neutrophils or monocytes. Most notable were a large but gradual accumulation of Ins(1,3,4,5,6)P5 as HL60 cells decreased in size and acquired neutrophil characteristics, and much more rapid and sequential declines in InsP4, InsP5 and InsP6 as the cells started to take on monocyte character. There was a marked accumulation of free inositol and of phosphatidylinositol in the cells during neutrophil differentiation, probably caused at least in part by an increased rate of inositol uptake providing an increased intracellular inositol supply. The same accumulation of Ins(1,3,4,5,6)P5 occurred during neutrophil differentiation, whether it was induced by dimethylsulphoxide or by a combination of retinoic acid and a T-lymphocyte cell line-derived differentiation factor. Ins(1,4,5)P3, a physiological intracellular mediator of Ca2+ release from membrane stores, did not change in concentration during these differentiation processes. These observations suggest that some of the more abundant cellular inositol polyphosphates play some important, but not yet understood, role either in the processes of haemopoietic differentiation or in the expression of differentiated cell character in myeloid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号