首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thrombotic thrombocytopenic purpura is caused by congenital or acquired deficiency of ADAMTS-13, a metalloprotease that cleaves the endothelium-derived ultra-large multimers of von Willebrand factor (ULVWF). The proteolysis converts hyper-reactive and thrombogenic ULVWF into smaller and less adhesive plasma forms. Activity of ADAMTS-13 is usually measured in a static system under non-physiological conditions that require protein denaturation and prolonged incubation. We have demonstrated previously that ULVWF multimers, upon release from endothelial cells, form platelet-decorated string-like structures that are rapidly cleaved by ADAMTS-13. Here we report the direct interaction between ADAMTS-13 and VWF under both static and flowing conditions. ADAMTS-13-coated beads adhered to both immobilized VWF and ULVWF strings presented by stimulated endothelial cells. These beads adhered to VWF under both venous (2.5 dynes/cm2) and arterial (30 dynes/cm2) shear stresses. We then demonstrated that ADAMTS-13 beads adhered to immobilized recombinant VWF-A1 and -A3 domains, but soluble metalloprotease bound preferentially to the A3 domain, suggesting that the VWF A3 domain may be the primary docking site for the metalloprotease. We suggest that tensile stresses imposed by fluid shear stretch endothelial bound ULVWF multimers to expose binding sites within the A domains for circulating ADAMTS-13. The bound enzyme then cleaves within the A2 domain that lies in close proximity and releases smaller VWF multimers into the plasma. Once released, these cleaved VWF fragments become inaccessible for the metalloprotease to prevent further cleavage.  相似文献   

3.
Msx-1 is known to regulate ectoderm-mesenchyme and mesenchyme-mesenchyme tissue interactions in the developing vertebrate limb bud. In this study, the spatial and temporal expression pattern ofMsx-1 in the regenerating limbs of axolotls (Ambystoma mexicanum) was examined by whole mountin situ hybridization and RT-PCR. In addition, the effects of retinoic acid (RA) and denervation on theMsx-1 expression were examined as well. In the regenerating normal limbs, the weak expression ofMsx-1 was detected in the mesenchymal cells under the apical ectodermal cap. From the early bud stage, the elevated level ofMsx-1 expression was maintained until the early digit stage. However,Msx-1 expression was rapidly declined by the completion of regeneration. Compared to the normal limb regeneration,Msx-1 expression in RA treated limb regenerates was low until 9 days after RA treatment but increased during blastema growth period both m the lower and the upper arm regenerates. These results suggest that theMsx-1 regulates the proliferation and growth of blastema cells, and its expression may not be responsible for the dedifferentiation process. On the other hand, high level ofMsx-1 expression was noted in the limb stump tissue after denervation. This result indicates thatMsx-1 is also related to the regression of denervated mature tissue.  相似文献   

4.
The human MOCS3 gene encodes a protein involved in activation and sulfuration of the C terminus of MOCS2A, the smaller subunit of the molybdopterin (MPT) synthase. MPT synthase catalyzes the formation of the dithiolene group of MPT that is required for the coordination of the molybdenum atom in the last step of molybdenum cofactor (Moco) biosynthesis. The two-domain protein MOCS3 catalyzes both the adenylation and the subsequent generation of a thiocarboxylate group at the C terminus of MOCS2A by its C-terminal rhodanese-like domain (RLD). The low activity of MOCS3-RLD with thiosulfate as sulfur donor and detailed mutagenesis studies showed that thiosulfate is most likely not the physiological sulfur source for Moco biosynthesis in eukaryotes. It was suggested that an l-cysteine desulfurase might be involved in the sulfuration of MOCS3 in vivo. In this report, we investigated the involvement of the human l-cysteine desulfurase Nfs1 in sulfur transfer to MOCS3-RLD. A variant of Nfs1 was purified in conjunction with Isd11 in a heterologous expression system in Escherichia coli, and the kinetic parameters of the purified protein were determined. By studying direct protein-protein interactions, we were able to show that Nfs1 interacted specifically with MOCS3-RLD and that sulfur is transferred from l-cysteine to MOCS3-RLD via an Nfs1-bound persulfide intermediate. Because MOCS3 was shown to be located in the cytosol, our results suggest that cytosolic Nfs1 has an important role in sulfur transfer for the biosynthesis of Moco.  相似文献   

5.
A monoclonal antibody (MCI20.6) which inhibited measles virus (MV) binding to host cells was previously used to characterize a 57- to 67-kDa cell surface glycoprotein as a potential MV receptor. In the present work, this glycoprotein (gp57/67) was immunopurified, and N-terminal amino acid sequencing identified it as human membrane cofactor protein (CD46), a member of the regulators of complement activation gene cluster. Transfection of nonpermissive murine cells with a recombinant expression vector containing CD46 cDNA conferred three major properties expected of cells permissive to MV infection. First, expression of CD46 enabled MV to bind to murine cells. Second, the CD46-expressing murine cells were able to undergo cell-cell fusion when both MV hemagglutinin and MV fusion glycoproteins were expressed after infection with a vaccinia virus recombinant encoding both MV glycoproteins. Third, M12.CD46 murine B cells were able to support MV replication, as shown by production of infectious virus and by cell biosynthesis of viral hemagglutinin after metabolic labeling of infected cells with [35S]methionine. These results show that the human CD46 molecule serves as an MV receptor allowing virus-cell binding, fusion, and viral replication and open new perspectives in the study of MV pathogenesis.  相似文献   

6.
Cellular disintegrin and metalloproteinases (ADAMs) are a family of genes with a sequence similar to the snake venom metalloproteinases and disintegrins. ADAMTS-1 is a unique ADAM family protein with respect to the presence of thrombospondin type I motifs and the capacity to bind to the extracellular matrix. Because ADAMTS-1 has a potential zinc-binding motif in the metalloproteinase domain, we examined in this study whether ADAMTS-1 is an active metalloproteinase by means of the proteinase trapping mechanism of alpha2-macroglobulin. We found that the soluble type of ADAMTS-1 protein is able to form a covalent-binding complex with alpha2-macroglobulin. Furthermore, the point mutation within the zinc-binding motif of ADAMTS-1 protein eliminates its capacity to bind to alpha2-macroglobulin. These data demonstrate that the metalloproteinase domain of ADAMTS-1 is catalytically active. In addition, we showed that the removal of the pro-domain from the ADAMTS-1 precursor is impaired in the furin-deficient cell line, LoVo, and that the processing ability of the cells is restored by the co-expression of the furin cDNA. These data provide evidence that the ADAMTS-1 precursor is processed in vivo by furin endopeptidase in the secretory pathway. Consequently, ADAMTS-1 is an active metalloprotease that is associated with the extracellular matrix. This study strongly suggests that ADAMTS-1 may play a role in the inflammatory process through its protease activity.  相似文献   

7.
Murine ovarian folliculogenesis commences after birth involving oocyte growth, somatic cell differentiation and structural remodeling of follicle stromal boundaries. The extracellular metalloproteinase ADAMTS-1 has activity against proteoglycans and collagen and is produced by the granulosa cells of ovarian follicles. Mice with ADAMTS-1 gene disruption are subfertile due to an unknown mechanism resulting in severely reduced ovulation. Here we show that ADAMTS-1 is necessary for structural remodeling during ovarian follicle growth. A significant reduction in the number of healthy growing follicles and corresponding follicle dysmorphogenesis commencing at the stage of antrum formation was identified in ADAMTS-1-/- ovaries. Morphological analysis and immunostaining of basement membrane components identified stages of follicle dysgenesis from focal disruption in ECM integrity to complete loss of follicular structures. Cells expressing the thecal marker Cyp-17 were lost from dysgenic regions, while oocytes and dispersed cells expressing the granulosa cell marker anti-mullerian hormone persisted in ovarian stroma. Furthermore, we found that the ovarian lymphatic system develops coincidentally with follicular development in early postnatal life but is severely delayed in ADAMTS-1-/- ovaries. These novel roles for ADAMTS-1 in structural maintenance of follicular basement membranes and lymphangiogenesis provide new mechanistic understanding of folliculogenesis, fertility and disease.  相似文献   

8.
Translational GTPases are universally conserved GTP hydrolyzing enzymes, critical for fidelity and speed of ribosomal protein biosynthesis. Despite their central roles, the mechanisms of GTP‐dependent conformational switching and GTP hydrolysis that govern the function of trGTPases remain poorly understood. Here, we provide biochemical and high‐resolution structural evidence that eIF5B and aEF1A/EF‐Tu bound to GTP or GTPγS coordinate a monovalent cation (M+) in their active site. Our data reveal that M+ ions form constitutive components of the catalytic machinery in trGTPases acting as structural cofactor to stabilize the GTP‐bound “on” state. Additionally, the M+ ion provides a positive charge into the active site analogous to the arginine‐finger in the Ras‐RasGAP system indicating a similar role as catalytic element that stabilizes the transition state of the hydrolysis reaction. In sequence and structure, the coordination shell for the M+ ion is, with exception of eIF2γ, highly conserved among trGTPases from bacteria to human. We therefore propose a universal mechanism of M+‐dependent conformational switching and GTP hydrolysis among trGTPases with important consequences for the interpretation of available biochemical and structural data.  相似文献   

9.
The C-terminal half of the replicase ORF1a polyprotein of the arterivirus equine arteritis virus is processed by a chymotrypsinlike serine protease (SP) (E. J. Snijder et al., J. Biol. Chem. 271:4864-4871, 1996) located in nonstructural protein 4 (nsp4). Three probable SP cleavage sites had previously been identified in the ORF1a protein. Their proteolysis explained the main processing products generated from the C-terminal part of the ORF1a protein in infected cells (E. J. Snijder et al., J. Virol. 68:5755-5764, 1994). By using sequence comparison, ORF1a expression systems, and site-directed mutagenesis, we have now identified two additional SP cleavage sites: Glu-1430 / Gly and Glu-1452 / Ser. This means that the ORF1a protein can be cleaved into eight processing end products: nsp1 to nsp8. By microsequence analysis of the nsp5 and nsp7 N termini, we have now formally confirmed the specificity of the SP for Glu / (Gly/Ser) substrates. Importantly, our studies revealed that the C-terminal half of the ORF1a protein (nsp3-8) can be processed by the SP following two alternative pathways, which appear to be mutually exclusive. In the majority of the nsp3-8 precursors the SP cleaves the nsp4/5 site, yielding nsp3-4 and nsp5-8. Subsequently, the latter product is cleaved at the nsp7/8 site only, whereas the newly identified nsp5/6 and nsp6/7 sites appear to be inaccessible to the protease. In the alternative proteolytic cascade, which is used at a low but significant level in infected cells, it is the nsp4/5 site which remains uncleaved, while the nsp5/6 and nsp6/7 sites are processed to yield a set of previously unnoticed processing products. Coexpression studies revealed that nsp3-8 has to interact with cleaved nsp2 to allow processing of the nsp4/5 junction, the first step of the major processing pathway. When the nsp2 cofactor is absent, the nsp4/5 site cannot be processed and nsp3-8 is processed following the alternative, minor pathway.  相似文献   

10.
11.
The cDNA encoding rice methionyl-tRNA synthetase was isolated. The protein exhibited a C-terminal polypeptide appended to a classical MetRS domain. This supplementary domain is related to endothelial monocyte activating polypeptide II (EMAPII), a cytokine produced in mammals after cleavage of p43, a component of the multisynthetase complex. It is also related to Arc1p and Trbp111, two tRNA binding proteins. We expressed rice MetRS and a derivative with a deletion of its EMAPII-like domain. Band-shift analysis showed that this extra-domain provides MetRS with non-specific tRNA binding properties. The EMAPII-like domain contributed a 10-fold decrease in K:(M) for tRNA in the aminoacylation reaction catalyzed by the native enzyme, as compared with the C-terminally truncated MetRS. Consequently, the EMAPII domain provides MetRS with a better catalytic efficiency at the free tRNA concentration prevailing in vivo. This domain binds the acceptor minihelix of tRNA(Met) and facilitates its aminoacylation. These results suggest that the EMAPII module could be a relic of an ancient tRNA binding domain that was incorporated into primordial synthetases for aminoacylation of RNA minihelices taken as the ancestor of modern tRNA.  相似文献   

12.
We demonstrate that in humans, two metalloproteases, ADAMTS-9 (1935 amino acids) and ADAMTS-20 (1911 amino acids) are orthologs of GON-1, an ADAMTS protease required for gonadal morphogenesis in Caenorhabditis elegans. ADAMTS-9 and ADAMTS-20 have an identical modular structure, are distinct in possessing 15 TSRs and a unique C-terminal domain, and have a similar gene structure, suggesting that they comprise a new subfamily of human ADAMTS proteases. ADAMTS20 is very sparingly expressed, although it is detectable in epithelial cells of the breast and lung. However, ADAMTS9 is highly expressed in embryonic and adult tissues, and therefore we characterized the ADAMTS-9 protein further. Although the ADAMTS-9 zymogen has many proprotein convertase processing sites, pulse-chase analysis, site-directed mutagenesis, and amino acid sequencing demonstrated that maturation to the active form occurs by selective proprotein convertase (e.g. furin) cleavage of the Arg(287)-Phe(288) bond. Although lacking a transmembrane sequence, ADAMTS-9 is retained near the cell surface as well as in the ECM of transiently transfected COS-1 and 293 cells. COS-1 cells transfected with ADAMTS9 (but not vector-transfected cells) proteolytically cleaved bovine versican and aggrecan core proteins at the Glu(441)-Ala(442) bond of versican V1 and the Glu(1771)-Ala(1772) bond of aggrecan, respectively. In contrast, the ADAMTS-9 catalytic domain alone was neither localized to the cell surface nor able to confer these proteolytic activities on cells, demonstrating that the ancillary domains of ADAMTS-9, including the TSRs, are required both for specific extracellular localization and for its versicanase and aggrecanase activities.  相似文献   

13.
Although it is well established that the Gdnf-Ret signal transduction pathway initiates metanephric induction, no single regulator has yet been identified to specify the metanephric mesenchyme or blastema within the intermediate mesoderm, the earliest step of metanephric kidney development and the molecular mechanisms controlling Gdnf expression are essentially unknown. Previous studies have shown that a loss of Eya 1 function leads to renal agenesis that is a likely result of failure of metanephric induction. The studies presented here demonstrate that Eya 1 specifies the metanephric blastema within the intermediate mesoderm at the caudal end of the nephrogenic cord. In contrast to its specific roles in metanephric development, Eya 1 appears dispensable for the formation of nephric duct and mesonephric tubules. Using a combination of null and hypomorphic Eya 1 mutants, we now demonstrated that approximately 20% of normal Eya 1 protein level is sufficient for establishing the metanephric blastema and inducing the ureteric bud formation but not for its normal branching. Using Eya 1, Gdnf, Six 1 and Pax 2 mutant mice, we show that Eya 1 probably functions at the top of the genetic hierarchy controlling kidney organogenesis and it acts in combination with Six 1 and Pax 2 to regulate Gdnf expression during UB outgrowth and branching. These findings uncover an essential function for Eya 1 as a critical determination factor in acquiring metanephric fate within the intermediate mesoderm and as a key regulator of Gdnf expression during ureteric induction and branching morphogenesis.  相似文献   

14.
15.
16.
17.
N-Hydroxyformamide-class metalloprotease inhibitors were designed and synthesized, which have potent broad-spectrum activity versus matrix metalloproteases and TNF-alpha converting enzyme (TACE). Compound 13c possesses good oral and intravenous pharmacokinetics in the rat and dog.  相似文献   

18.
19.
20.
Fibulins are a family of extracellular glycoproteins associated with basement membranes and elastic fibers in vertebrates. Conservation of the fibulin-1 gene throughout metazoan evolution includes fibulin-1C and fibulin-1D alternate splice variants, although little is known about variant specific functions that would justify this striking structural conservation. We have therefore investigated the structure, localization and loss-of-function phenotype specific to both fibulin-1 variants in C. elegans. We find that fibulin-1C has specific roles during pharynx, intestine, gonad and muscle morphogenesis, being required to regulate cell shape and adhesion, whereas fibulin-1D assembles in flexible polymers that connect the pharynx and body-wall-muscle basement membranes. The assembly of fibulin-1C and fibulin-1D in multiple locations is dependent upon the presence of hemicentin, a recently described extracellular member of the immunoglobulin superfamily. We suggest that the distinct developmental roles and hemicentin-dependent assembly for fibulin-1 splice variants demonstrated here may be relevant to fibulin-1 and possibly other fibulin family members in non-nematode species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号