首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precise localization of NF1 to 17q11.2 by balanced translocation.   总被引:25,自引:11,他引:14       下载免费PDF全文
A female patient is described with von Recklinghausen neurofibromatosis (NF1) in association with a balanced translocation between chromosome 17 and 22 [46,XX,t(17;22)(q11.2;q11.2)]. The breakpoint in chromosome 17 is cytogenetically identical to a previously reported case of NF1 associated with a 1;17 balanced translocation and suggests that the translocation events disrupt the NF1 gene. This precisely maps the NF1 gene to 17q11.2 and provides a physical reference point for strategies to clone the breakpoint and therefore the NF1 gene. A human-mouse somatic cell hybrid was constructed from patient lymphoblasts which retained the derivative chromosome 22 (22pter----22q11.2::17q11.2----17qter) but not the derivative 17q or normal 17. Southern blot analysis with genes and anonymous probes known to be in proximal 17q showed ErbA1, ErbB2, and granulocyte colony-stimulating factor (CSF3) to be present in the hybrid and therefore distal to the breakpoint, while pHHH202 (D17S33) and beta crystallin (CRYB1) were absent in the hybrid and therefore proximal to the breakpoint. The gene cluster including ErbA1 is known to be flanked by the constitutional 15;17 translocation breakpoint in hybrid SP3 and by the acute promyelocytic leukemia (APL) breakpoint, which provides the following gene and breakpoint order: cen-SP3-(D17S33,CRYB1)-NF1-(CSF3,ERBA1, ERBB2)-APL-tel. The flanking breakpoints of SP3 and API are therefore useful for rapidly localizing new markers to the neurofibromatosis critical region, while the breakpoints of the two translocation patients provide unique opportunities for reverse genetic strategies to clone the NF1 gene.  相似文献   

2.
FLI1 is a common mouse viral integration region in virus-induced leukemias and lymphomas. Using an evolutionarily conserved mouse probe and Southern hybridization to (rodent x human) somatic cell hybrid DNAs, the human homolog of FLI1 has been shown to lie on a fragment of chromosome 11 flanked on the centromeric side by the acute lymphoblastic leukemia-associated t(4;11)(q21;q23) translocation breakpoint and on the telomeric side by the Ewing- and neuroepithelioma-associated t(11;22) (q24;q12) breakpoint.  相似文献   

3.
We have detected a polymorphism in the 3' untranslated region of the AML1 gene, which is located at the breakpoint on chromosome 21 in the t(8;21)(q22;q22.3) translocation often associated with patients with acute myeloid leukemia. Informative CEPH families were genotyped for this polymorphism and used to localize the gene on the linkage map of human chromosome 21. The AML1 gene is located between the markers D21S216 and D21S211, in chromosomal band 21q22.3.  相似文献   

4.
An examination of the synteny blocks between mouse and human chromosomes aids in understanding the evolution of chromosome divergence between these two species. We comparatively mapped the human (HSA) Chromosome (Chr) 14q11.2-q13 cytogenetic region with the intervals of orthologous genes on mouse (MMU) chromosomes. A lack of conserved gene order was identified between the human cytogenetic region and the interval of orthologs on MMU 12. The evolutionary breakpoint junction was defined within 2.5 Mb, where the conserved synteny of genes on HSA 14 changes from MMU 12 to MMU 14. At the evolutionary breakpoint junction, a human EST (GI: 1114654) with identity to the human and mouse BCL2 interacting gene, BNIP3, was mapped to mouse Chr 3. New gene homologs of LAMB1, MEOX2, NRCAM, and NZTF1 were identified on HSA 7 and on the proximal cytogenetic region of HSA 14 by mapping mouse genes recently reported to be genetically linked within the relevant MMU 12 interval. This study contributes to the identification of homology relationships between the genes of HSA 14q11.2-q13 and mouse Chr 3, 12, and 14. Received: 16 March 2000 / Accepted: 16 June 2000  相似文献   

5.
F G Barr  J Holick  L Nycum  J A Biegel  B S Emanuel 《Genomics》1992,13(4):1150-1156
A characteristic translocation t(2;13)(q35;q14) has been previously identified in the pediatric soft tissue tumor alveolar rhabdomyosarcoma. We have assembled a panel of lymphoblast, fibroblast, and somatic cell hybrid cell lines with deletions and unbalanced translocations involving chromosome 2 to develop a physical map of the distal 2q region. Twenty-two probes were localized on this physical map by Southern blot analysis of the mapping panel. The position of these probes with respect to the t(2;13) rhabdomyosarcoma breakpoint was then determined by quantitative Southern blot analysis of an alveolar rhabdomyosarcoma cell line with two copies of the derivative chromosome 13 and one copy of the derivative chromosome 2 and by analysis of somatic cell hybrid clones derived from an alveolar rhabdomyosarcoma cell line. We demonstrate that the t(2;13) breakpoint is situated within a map interval delimited by the distal deletion breakpoint in fibroblast line GM09892 and the t(X;2) breakpoint in somatic cell hybrid GM11022. Furthermore, from a comparison of our data with the linkage map of the syntenic region on mouse chromosome 1, we conclude that the t(2;13) breakpoint is most closely flanked by loci INHA and ALPI within this map interval.  相似文献   

6.
7.
Summary A large metacentric marker chromosome, m20, in a line of human D98/AH-2 cells was identified by Q bands as being a translocation (1;17)(p36;q21). This was confirmed by means of somatic cell hybridization between D98/AH-2 and thymidine kinase (TK) deficient mouse cells. The hybrid clones by HAT selective system retained m20, indicating the presence of TK locus on this chromosome. The results also provide evidence that TK gene is located on the distal region of the breakpoint in 17q21 but not on 17q21 17pter.  相似文献   

8.
The genetic defect causing von Recklinghausen neurofibromatosis (NF1) has been mapped to the proximal long arm of chromosome 17 by linkage analysis. Flanking markers have been identified, bracketing NF1 in 17q11.2 and laying the foundation for isolating the disease gene. Recently, a family in which a mother and her two children show both the symptoms of NF1 and the presence of a balanced translocation, t(1;17)(p34.3;q11.2), has been identified. We have examined the possibility that the translocation has occurred in or near the NF1 gene by constructing a somatic cell hybrid line containing the derivative chromosome 1 (1qter-p34.3::17q11-qter). On chromosome 1, the breakpoint occurred between SRC2 and D1S57, which are separated by 14 cM. The translocation breakpoint was localized on chromosome 17 between D17S33 and D17S57, markers that also flank NF1 within a region of 4 cM. These data are consistent with the possibility that the translocation event is the cause of NF1 in this pedigree. Consequently, the isolation of the translocation breakpoint, by approach from either the chromosome 1 or the chromosome 17 side, may facilitate the identification of the NF1 gene.  相似文献   

9.
Menkes syndrome is a rare X-linked recessive disorder characterized by an inability to metabolize copper. A female patient with both this disease and an X; autosome translocation with karyotype 46,X,t(X;2)(q13;q32.2) has previously been described. The translocation breakpoint in Xq13 coincides with a previous assignment of the Menkes gene at Xq13 by linkage data in humans and by analogy to the mottled mutations which are models for Menkes disease in the mouse. Therefore, this translocation probably interrupts the gene for Menkes syndrome in band Xq13. We describe here experiments to precisely map the translocation breakpoint within this chromosomal band. We have established a lymphoblastoid cell line from this patient and have used it to isolate the der(2) translocation chromosome (2pter----2q32::Xq13----Xqter) in human/hamster somatic cell hybrids. Southern blot analyses using a number of probes specific for chromosomes X and 2 have been studied to define precisely the location of the translocation breakpoint. Our results show that the breakpoint in this patient--and, therefore, likely the Menkes gene--maps to a small subregion of band Xq13.2-q13.3 proximal to the PGK1 locus and distal to all other Xq13 loci tested.  相似文献   

10.
TBC1D1 is the founding member of a family of related proteins with homology to tre-2/UPS6, BUB2, and cdc16 and containing the tbc box motif of 180-220 amino acids. This protein family is thought to have a role in differentiation and in regulating cell growth. We set out to map the TBC1D1 gene in mouse and human. Segregation analysis of a TBC1D1 RFLP in two independent mouse RI (recombinant inbred) lines reveals that mouse Tbc1d1 is closely linked to Pgm1 on chromosome 5. The human TBC1D1 gene was assigned to human chromosome 4p15.1-->4q21 using Southern blot analyses of genomic DNAs from rodent-human somatic cell lines. A human-specific genomic fragment was observed in the somatic cell lines containing human chromosome 4 or the 4p15.1-->4q21 region of the chromosome. TBC1D1 maps to the region containing the ortholog of mouse Pgm1 adding another locus to this long region of conserved synteny between mouse and man.  相似文献   

11.
12.
G MacDonald  M L Chu  D R Cox 《Genomics》1991,11(2):317-323
Comparative mapping of human and mouse DNA for regions of genetic homology between human Chromosome 21 and the mouse genome is of interest because of the possibility of developing mouse models of human trisomy 21 (Down syndrome), understanding chromosome evolution, and isolating novel sequences conserved between the two species. At least two mouse chromosomes are known to carry sequences homologous to those on human Chromosome 21: mouse Chromosome 16 (D21S16h, D21S13h, D21S52h, App, Sod-1, Mx-1, Ets-2, Prgs,Ifnar) and mouse Chromosome 17 (D21S56h, Crya-1, and Cbs). Recently, five additional genes have been mapped within region 21q22 of human Chromosome 21:PFKL, CD18, COL6A1, COL6A2, and S100B. To assign these sequences to specific mouse chromosomes, we used human cDNA probes for COL6A1, COL6A2, CD18, and PFKL and a rat brain cDNA probe for S100B in conjunction with a panel of seven Chinese hamster-mouse somatic cell hybrids segregating mouse chromosomes. The specific chromosome complements of the hybrid cell lines and the presence or absence of hybridizing mouse sequences in their DNAs allow us to assign all five sequences to mouse Chromosome 10, with the assignment of Pfkl reported here for the first time. Analysis of genomic mouse DNA fragments produced by digestion with rare-cutting restriction enzymes and separated using pulsed-field gel electrophoresis allows us to construct a fine-structure physical map of two segments of the region of Chromosome 10 containing these five markers. The five loci span at least 1900 kb of mouse DNA and are consistent with the human order: Pfkl-Cd-18-Col6a-1-Col6a-2-S100b.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Seven loci that have been previously mapped to human and mouse chromosomes have now been regionally assigned to six sheep chromosomes. Nerve growth factor β (NGFB), antigen CD3 ζ polypeptide (CD3Z), inhibin β A (INHBA), estrogen receptor (ESR), rhodopsin (RHO), insulin-like growth factor 2 (IGF2), and myelin basic protein (MBP) were mapped by in situ hybridization to sheep chromosomes 1p24-p21, 1p14-p11, 4q26-q31, 8q25-q27, 19q23-qter, 21q21-qter, and 23q11-q12.3, respectively. ESR, RHO, IGF2, and MBP are the first markers to be assigned to their respective sheep chromosomes. These new data allow the previously unassigned sheep linkage groups H, J, K, and S to be provisionally assigned to chromosomes 21, 19, 4, and 8, respectively. The unassigned sheep syntenic groups U8 and U13 are provisionally assigned to sheep chromosomes 8 and 21, respectively. The new assignments support the emerging picture that there is extensive conservation of human chromosomal segments in the sheep and cattle genomes. The position of another evolutionary breakpoint on human chromosome 1q is suggested.  相似文献   

14.
The results of genetic linkage studies for autism have suggested that a susceptibility locus for the disease is located on the long arm of chromosome 7 (7q). An autistic individual carrying a translocation, t(7;13)(q31.3;q21), with the chromosome 7 breakpoint located in the region of 7q implicated by genetic studies was identified. A novel gene known as "RAY1" (or "FAM4A1") was found to be directly interrupted by the translocation breakpoint. The gene, which was found to be encoded by 16 exons with evidence of alternative splicing, spanned > or =220 kb of DNA at 7q31.3. Mutation screening of the entire coding region in a set of 27 unrelated autistic individuals failed to identify phenotype-specific variants, suggesting that coding region mutations are unlikely to be involved in the etiology of autism. Apparent homologues of RAY1 have also been identified in mouse, rat, pig, chicken, fruit fly, and nematode. The human and mouse genes share similar splicing patterns, and their predicted protein products are 98% identical.  相似文献   

15.
16.
We have utilized a panel of Chinese hamster x mouse somatic cell hybrids segregating mouse chromosomes to assign a gene for arylsulfatase A (ARSA) to mouse chromosome 15. Considering our previous assignment of a gene for diaphorase-1 (DIA1) to the same mouse chromosome, we have evidence for another syntenic relationship that has been conserved, since the homologous loci for human ARSA and DIA1 are both located on human chromosome 22. Because MMU 15 and HSA 22 are quite dissimilar in size and banding patterns, we have attempted to identify the conserved portion by regional mapping of human DIA1 and ARSA using somatic cell hybrids segregating a human chromosome translocation t(15;22)(q14;q13.31). The results assign human DIA1 and ARSA to the distal sub-band of 22q13 (region 22q13.31 leads to qter). The locus for mitochondrial aconitase (ACO2) has been separated by the breakpoint from DIA1 and ARSA and is located more proximally.  相似文献   

17.
The definition of the genetic linkage map of human chromosomes may be helpful in the analysis of cancer-specific chromosome abnormalities. In the translocation (8;21)(q22;q22), a nonrandom cytogenetic abnormality of acute myelogenous leukemia (AML), we previously observed the transposition of the ETS2 gene located at the 21q22 region from chromosome 21 to chromosome 8. However, no ETS2 rearrangements were detected in the DNA of t(8;21)-positive AML cells. Genetic linkage analysis has allowed us to locate the ETS2 gene relative to other loci and to establish that the breakpoint is at an approximate genetic distance of 17 cM from ETS2. When the information from the linkage map is combined with that from molecular studies, it is apparent that (a) the t(8;21) breakpoint does not affect the ETS2 gene structure or the structure of the other four loci proximal to ETS2: D21S55, D21S57, D21S17, and ERG, and ETS-related gene; and (b) the actual DNA sequence involved in the t(8;21) must reside in a 3-cM genetic region between the D21S58 and the D21S55/D21S57 loci, and remains to be identified.  相似文献   

18.
Familial combined hyperlipidemia (FCHL) is a common genetic dyslipidemia predisposing to premature coronary heart disease (CHD). We previously identified a locus for FCHL on human Chromosome (Chr) 1q21-q23 in 31 Finnish FCHL families. We also mapped a gene for combined hyperlipidemia (Hyplip1) to a potentially orthologous region of mouse Chr 3 in the HcB-19/Dem mouse model of FCHL. The human FCHL locus was, however, originally mapped about 5 Mb telomeric to the synteny border, the centromeric part of which is homologous to mouse Chr 3 and the telomeric part to mouse Chr 1. To further localize the human Hyplip1 homolog and estimate its distance from the peak linkage markers, we fine-mapped the Hyplip1 locus and defined the borders of the region of conserved synteny between human and mouse. This involved establishing a physical map of a bacterial artificial chromosome (BAC) contig across the Hyplip1 locus and hybridizing a set of BACs to both human and mouse chromosomes by fluorescence in situ hybridization (FISH). We narrowed the location of the mouse Hyplip1 gene to a 1.5-cM region that is homologous only with human 1q21 and within approximately 5–10 Mb of the peak marker for linkage to FCHL. FCHL is a complex disorder and this distance may, thus, reflect the well-known problems hampering the mapping of complex disorders. Further studies identifying and sequencing the Hyplip1 gene will show whether the same gene predisposes to hyperlipidemia in human and mouse. Received: 9 September 2000 / Accepted: 30 October 2000  相似文献   

19.
A somatic cell hybrid mapping panel was constructed to localize cloned DNA sequences to any of 15 potentially different regions of human chromosome 17. Relatively high-resolution mapping is possible for 50% of the chromosome length in which 12 breakpoints are distributed over approximately 45 megabases, with an average spacing estimated at 1 breakpoint every 2-7 megabases. This high-resolution capability includes the pericentromeric region of 17 to which von Recklinghausen neurofibromatosis (NF1) has recently been mapped. Using 20 cloned genes and anonymous probes, we have tested the expected order and location of panel breakpoints and confirmed, refined, or corrected the regional assignment of several cloned genes and anonymous probes. Four markers with varying degrees of linkage to NF1 have been physically localized and ordered by the panel: the loosely linked markers myosin heavy chain 2 (25 cM) to p12----13.105 and nerve growth factor receptor (14 cM) to q21.1----q23; the more closely linked pABL10-41 (D17S71, 5 cM) to p11.2; and the tightly linked pHHH202 (D17S33) to q11.2-q12. Thus, physical mapping of linked markers confirms a pericentromeric location of NF1 and, along with other data, suggests the most likely localization is proximal 17q.  相似文献   

20.
Genes located on human chromosome 12 (HSA12) are conserved on pig chromosomes 5 and 14 (SSC5 and SSC14), with HSA12q23.3-->q24.11 harboring the evolutionary breakpoint between these chromosomes. For this study, pig sequence-tagged sites (STS) were developed for nine HSA12 genes flanking this breakpoint. Radiation hybrid (RH) mapping using the IMpRH panel revealed that COL2A1, DUSP6, KITLG, PAH and STAB2 map to SSC5, while PXN, PLA2G1B, SART3 and TCF1 map to SSC14. Polymorphisms identified in COL2A1, DUSP6, PAH, PLA2G1B and TCF1 were used for genetic linkage mapping and confirmed the map locations for these genes. Our results indicate that the HSA12 evolutionary breakpoint occurs between STAB2 and SART3 in a region spanning less than five million basepairs. These results refine the comparative map of the HSA12 evolutionary breakpoint region and help to further elucidate the extensive gene order rearrangements between HSA12 and SSC5 and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号