首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Melanocyte-stimulating hormone (α-MSH) regulates important physiological functions including energy homeostasis and inflammation. Potent analogs of α-MSH, [Nle4, d-Phe7]-α-MSH (NDP-α-MSH) and melanotan-II (MT-II), are widely used in pharmacological studies, but the hemodynamic effects associated with their systemic administration have not been thoroughly examined. Therefore, we investigated the hemodynamic actions of these compounds in anesthetized and conscious C57Bl/6N mice using peripheral routes of administration. NDP-α-MSH and MT-II induced mild changes in blood pressure and heart rate in anesthetized mice compared to the effects observed in conscious mice, suggesting that anesthesia distorts the hemodynamic actions of α-MSH analogs. In conscious mice, NDP-α-MSH and MT-II increased blood pressure and heart rate in a dose-dependent manner, but the tachycardic effect was more prominent than the pressor effect. Pretreatment with the melanocortin (MC) 3/4 receptor antagonist SHU9119 abolished these hemodynamic effects. Furthermore, the blockade of β1-adrenoceptors with metoprolol prevented the pressor effect and partly the tachycardic action of α-MSH analogs, while the ganglionic blocker hexamethonium abrogated completely the difference in heart rate between vehicle and α-MSH treatments. These findings suggest that the pressor effect is primarily caused by augmentation of cardiac sympathetic activity, but the tachycardic effect seems to involve withdrawal of vagal tone in addition to sympathetic activation. In conclusion, the present results indicate that systemic administration of α-MSH analogs elevates blood pressure and heart rate via activation of MC3/4 receptor pathways. These effects and the consequent increase in cardiac workload should be taken into account when using α-MSH analogs via peripheral routes of administration.  相似文献   

2.
The concentrations of catecholamines were determined in the decuticalarized retinas and brains at different ages in wildtype and ebony Drosophila melanogaster using the HPLC-technique with an electrochemical detector. L-Dopa, dopamine (DA), α-methyldopa (α-MD) and unidentified compounds X1, X2 and X3 were found in decuticalarized retinas and brains of wildtype and ebony at different ages. Retinas and brains of the mutant ebony have higher concentrations of L-Dopa, DA and α-MD than the wildtype. In both wildtype and ebony, the concentrations of X1, X2 and X3 were found to be higher in decuticalarized retinas than in brains. The identity and importance of X1, X2 and X3 are still unknown.  相似文献   

3.
Homovanillic acid (HVA) labelled with two deuterium atoms (d2-HVA) was used to label the peripheral body pool of endogenous HVA (d0-HVA). D2-HVA was rapidly injected intravenously into Rhesus monkeys and concentrations of both d2- and d0-HVA in sequential samples of blood serum and urine determined by gas chromatography-mass spectrometry. Parameters describing the distribution and elimination of HVA, as well as its pool size, turnover, and synthesis rate were then calculated. Results indicate that the decline of serum d2-HVA concentration with time is multiexponential, with a biological half-life ranging from 35.9 to 102 min in the four monkeys studied. The apparent volume of distribution of d2-HVA in the body was 0.813–1.17 1/kg. Serum clearance was 7.28–18.2 ml/kg/min. For most animals, only about 50% of the administered dose of d2-HVA was recovered unchanged in the urine. Renal clearance ranged from 3.79 to 17.0 ml/kg/min, and d0-HVA excretion rates ranged from 19.5 to 64.1 μg/hr. The size of the peripheral body pool of HVA, calculated from serum kinetic parameters, was 63.3–80.7 μg; HVA turnover was 5.43–13.9 μg/1/hr; and HVA production rate was calculated to be 36.6–84.3 (5.23–12.6 μg/kg/hr).  相似文献   

4.
Yvonne Y. Wu  E.T. Wei 《Life sciences》1982,30(18):1537-1545
Osmotic minipumps were used to infuse carbachol chloride (1.23 μg/hr), echothiophate iodide (0.5 μg/hr), histamine dihydrochloride (10 μg/hr), prostaglandin E2 (1.0 μg/hr) and thyrotropin-releasing hormone (0.5 and 5.0 μg/hr) solutions into the cerebral ventricles of unanesthetized rats and blood pressure was measured by the tail-cuff method. Histamine dihydrochloride, prostaglandin E2 and thyrotropin-releasing hormone produced an initial rise in blood pressure, but were not effective in producing sustained elevations in blood pressure. Carbachol infusions elevated blood pressure throughout the 7-day infusion period when results were compared to saline-infused animals. Infusions of echothiophate iodide, an anticholinesterase agent, produced an initial rise in blood pressure but these pressor effects were not sustained. In animals infused with echothiophate for 7 days, the pressor response to a challenge dose of echothiophate was diminished.  相似文献   

5.
The following experiments were designed in order to examine the inter-relationships of various prostaglandins (PG's) and the adrenergic nervous system, in conjunction with blood pressure and heart rate responses, in vivo. Stimulation of the entire spinal cord (50v, 0.3–3 Hz, 1.0 msec) of the pithed rat increased blood pressure, heart rate and plasma epinephrine (EPI) and norepinephrine (NE) concentration (radioenzymatic-thin layer chromatographic assay). Infusion of PGE2(10–30 μg/kg. min, i.v.) suppressed blood pressure and heart rate responses to spinal cord stimulation while plasma EPI (but not NE) was augmented over levels found in control animals. PGI2 (0.03–3.0 μg/kg. min, i.v.) suppressed the blood pressure response to spinal cord stimulation without any effect on heart rate or the plasma catecholamine levels. PGE2 and PGF2α(10–30 μg/kg. min, i.v.) did not change the blood pressure, heart rate or plasma EPI and NE responses to the spinal cord stimulation although PGF2α disclosed an overall vasopressor effect during the pre-stimulation period. At the pre-stimulation period it was also observed that PGE2, PGF2α and PGI2, had a positive chronotropic effect on the heart rate, the cardiac accelerating effect of PGE2 was not abolished by propanolol. These in vivo studies suggest that in the rat, PGE2 and PGI2 modulate sympathetic responses, primarily by interaction with the post-synaptic elements — PGE2 on both blood vessels and the heart and PGI2 by acting principally on blood vessels.  相似文献   

6.
AimsThis study dealt with the effect of chronic ethanol administration on hemodynamic responses elicited by α2-adrenergic (α-methyldopa) or I1-imidazoline (rilmenidine) receptor activation in telemetered female rats.Main methodsThe effects of α-methyldopa or rilmenidine on blood pressure (BP), heart rate (HR) and their variability were investigated in rats that received liquid diet without or with ethanol (5% w/v) for 12 weeks. To evaluate the effect of each drug on cardiovascular autonomic control (BP and HR variability) in the absence or presence of ethanol, three time-domain indices of hemodynamic variability were measured: (i) standard deviation of mean arterial pressure (SDMAP), (ii) standard deviation of beat-to-beat intervals, and (iii) root mean square of successive differences in R–R intervals.Key findingsIn liquid diet-fed control rats, i.p. rilmenidine (600 µg/kg) or α-methyldopa (100 mg/kg) reduced BP along with decreases and increases, respectively, in HR. Both drugs had no effect on HR variability but reduced BP variability (SDMAP), suggesting a reduced vasomotor sympathetic tone. Ethanol feeding attenuated reductions in BP and SDMAP evoked by α-methyldopa but not by rilmenidine.SignificanceWe conclude that chronic ethanol preferentially compromises α2- but not I1-receptor-mediated hypotension in female rats probably via modulation of vasomotor sympathetic activity. These findings highlight the adequacy of rilmenidine use to lower BP in hypertensive alcoholic females.  相似文献   

7.
α-Tocopherol (α-Toc) overload increases the risk of dying in humans (E.R. Miller III et al. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality Ann Int Med. 142 (2005) 37–46), and overload during early development leads to elevation of blood pressure at adult life, but the mechanism(s) remains unknown. We hypothesized that α-Toc overload during organogenesis affects the renal renin angiotensin system (RAS) components and renal Na+ handling, culminating with late elevated blood pressure. Pregnant Wistar rats received α-Toc or the superoxide dismutase mimetic tempol throughout pregnancy. We evaluated components of the intrarenal renin angiotensin system in neonate and juvenile offspring: Ang II-positive cells, Ang II receptors (AT1 and AT2), linked protein kinases, O2? production, NADPH oxidase abundance, lipid peroxidation and activity of Na+-transporting ATPases. In juvenile offspring we followed the evolution of arterial blood pressure. Neonates from α-Toc and tempol mothers presented with accentuated retardment in tubular development, pronounced decrease in glomerular Ang II-positive cells and AT1/AT2 ratio, intense production of O2? and upregulation of the α, ε and λ PKC isoforms. α-Toc decreased or augmented the abundance of renal (Na++K+)ATPase depending on the age and α-Toc dose. In juvenile rats the number of Ang II-positive cells returned to control values as well as PKCα, but co-existing with marked upregulation in the activity of (Na++K+) and Na+-ATPase and elevated arterial pressure at 30?days. We conclude that the mechanisms of these alterations rely on selective targeting of renal RAS components through genic and pro-oxidant effects of the vitamin.  相似文献   

8.
To test the hypothesis that abnormal prostaglandin reactivity may be a characteristic of essential hypertension, cardiovascular responses to prostaglandin F (PGF) were measured in young spontaneously hypertensive (SHR) and Wistar normotensive rats (NR). PGF(1 sec injection; 50 l/100 g.; .05, .5, 5, 50 g salt/kg) was injected retrograde into the femoral artery. Maximum changes were measured with respect to: 1) four different diameter categories of cremaster muscle arterioles, 2) mean arterial pressure (MAP), 3) pulse pressure (PP) and 4) heart rate. PGF at 5 and 50 g/kg significantly increased NR and SHR blood pressure. SHR MAP increased significantly more than NR MAP with the 50 g dose (P <. 001). PGF increased NR PP at the 50 g/kg dose and increased SHR PP at the .5, 5 and 50 g/kg dose. SHR PP response was significantly greater than that of the NR with the .5, 5 and 50 g/kg dose (P < .05, .01, .001 respectively). The mean SHR arteriolar constriction was greater than that of NR with the 50 g dose. The only change in heart rate was a 3% decrease from control in both NR and SHR during the pressor response to 50 g/kg. These results show an increased cardiovascular reactivity to PGF in SHR and may further suggest prostaglandin involvement in hypertensive disease.  相似文献   

9.
Cycloheximide, at a concentration of 10 mug/ml, rapidly blocked protein synthesis in L cells infected with reovirus. When the drug was added before 5 hr postinfection, synthesis of both single- and double-stranded varieties of virus-specific ribonucleic acid (RNA), which normally commences between 6 and 7 hr after infection, was blocked. When the cycloheximide was added at 9 hr after infection, uptake of uridine-H(3) into RNA, for the succeeding 6 hr at least, was similar to that of an infected culture without the drug. This latter uptake of uridine-H(3) in the presence of cycloheximide was largely into single-stranded RNA, since double-stranded RNA synthesis was rapidly and markedly inhibited by the cycloheximide. Single-stranded RNA formed in the presence of cycloheximide was found not to be a precursor of viral progeny, double-stranded RNA. Synthesis of double-stranded RNA in the infected cell probably requires prior synthesis of a new protein, which has a rapid rate of turnover. The possibility that formation of single-stranded RNA is preceded by synthesis of a second new protein is discussed.  相似文献   

10.
The fractional rates of protein synthesis (ks) and degradation (kp) were studied in the myeloma cell line SP2/0-AG14 grown at different rates (kg). Cells in spinner flask suspension cultures were maintained at constant cellular density for prolonged periods by replacement perfusion of labeling medium at a rate equivalent to the rate of growth. Total protein synthesis was calculated from the specific-radioactivity of labeled L-leucine in the precursor (medium) and cellular protein. Fractional synthesis rates determined by approach to equilibrium labeling were the same as those determined by equilibrium-pulse labeling kinetics and pulse-chase kinetics. The rate of protein degradation was determined from the established relationship kg = ks – kp. Protein synthesis rates remained constant over a threefold range in the rate of cell growth. At relatively slow growth rates (kg = 0.017/hr) turnover represented a major fraction of total synthesis (kp = 0.032/hr = 0.65ks). At rapid growth rates (kg = 0.058/hr) the value of kp was less than 0.005/hr. No major difference was observed between the ks determined for individual cellular proteins (separated by SDS-polyacrylamide (7.5%) gel electro-phoresis) from rapid- and slow-growing cultures. Thus, with an invariable ks, any change in growth rate is due to an inverse change in the rate of turnover. Since turnover is the balance between synthesis and degradation and since synthesis is unchanging then changes in the growth rate of SP2/0-AG14 should be due to changes in the rate of protein degradation. Experiments were therefore performed to determine the origin of the degradative machinery, ie, cytosolic or lysosomal; autolysis of prelabeled cellular protein (in vitro) was observed only at acidic pH (4.2) and WUS totally inhibited by addition of lcupcptin (10 μM) and pepstatin (2 μM), the specific inhibitors of lysosomal cathepsins B (L) and D, respectively. Since growth rate appears to be regulated by the alterations in the rate of protein degradation and degradation (in vitro) in SP2/0-AG14 appearsto be lysosomal, then one should be able to alter the rate of cellular growth by interfering with rate of lysosomal proteolysis. Indeed, when the lysosomotropic amine NH 4Cl (10 mM) is added to cells growing with a kg of 0.018/hr ± 0.001 (ks = 0.050/hr ± 0.002) the growth rate increased to 0.051/hr ± 0.002 without change in the rate of protein synthesis (ks = 0.049/hr ± 0.003). It is suggested from our data that the cellular growth rate of SP2/0-AG14 is regulated by the lysosomal apparatus; whether this regulation is itself regulated by either a specific compartmentalization of the lysosomal proteinases and/or their substrates or by endogenous protease inhibitors, should prove to be an exciting area for future investigation.  相似文献   

11.
To establish the range of individual blood responses to supplemental vitamin E, 30 healthy subjects ingested 75 mg of deuterium-labelled α-tocopherol with a standard breakfast. Blood was collected at 6, 9, 12, 27 and 51 h post ingestion and deuterated (d6) and non-deuterated (d0) α-tocopherol concentrations were determined in plasma and red blood cells (RBC) by GC-MS. To examine intra-individual responses, 6 of these subjects were re-examined at 6-month intervals over a 30-month period. Post ingestion, the amount of d6-α-tocopherol in blood increased rapidly with time with maximal concentrations seen at 12 h (plasma) and 27 h (RBC) in most subjects. At these times, d6-α-tocopherol concentration ranged from 0.3–12.4 μmol/l in plasma and 0.6–4.09 μmol/l packed cell in RBC. Area under the curve calculations indicated inter-individual differences of α-tocopherol uptake to be 40-fold for plasma (12.9–493.3 μmol h/l) and 6-fold for RBC (24.4–146.1 μmol h/l packed RBC). Intra-individual variation in α-tocopherol uptake was small in comparison and remained relatively constant over the 30-month period. We conclude that vitamin E uptake varies widely in the normal population, although it is comparatively stable for an individual over time. These differences likely arise from variations in the regulation of vitamin E uptake and metabolism between subjects. Factors regulating this process must be better understood before the optimal intake of vitamin E can be ascertained.  相似文献   

12.
A chronic increase in the concentration of sodium chloride in the cerebrospinal fluid (CSF) (↑CSF [NaCl]) appears to be critically important for the development of salt-dependent hypertension. In agreement with this concept, increasing CSF [NaCl] chronically by intracerebroventricular (icv) infusion of NaCl-rich artificial CSF (aCSF-HiNaCl) in rats produces hypertension by the same mechanisms (i.e., aldosterone-ouabain pathway in the brain) as that produced by dietary sodium in salt-sensitive strains. We first demonstrate here that icv aCSF-HiNaCl for 10 days also causes hypertension in wild-type (WT) mice. We then used both WT and gene-targeted mice to explore the mechanisms. In WT mice with a ouabain-sensitive Na,K-ATPase α(2)-isoform (α2(S/S)), mean arterial pressure rose by ~25 mmHg within 2 days of starting aCSF-HiNaCl (0.6 nmol Na/min) and remained elevated throughout the study. Ouabain (171 pmol/day icv) increased blood pressure to a similar extent. aCSF-HiNaCl or ouabain given at the same rates subcutaneously instead of intracerebroventricularly had no effect on blood pressure. The pressor response to icv aCSF-HiNaCl was abolished by an anti-ouabain antibody given intracerebroventricularly but not subcutaneously, indicating that it is mediated by an endogenous ouabain-like substance in the brain. We compared the effects of icv aCSF-HiNaCl or icv ouabain on blood pressure in α2(S/S) versus knockout/knockin mice with a ouabain-resistant endogenous α(2)-subunit (α2(R/R)). In α2(R/R), there was no pressor response to icv aCSF-HiNaCl in contrast to WT mice. The α2(R/R) genotype also lacked a pressor response to icv ouabain. These data demonstrate that chronic ↑CSF [NaCl] causes hypertension in mice and that the blood pressure response is mediated by the ouabain-like substance in the brain, specifically by its binding to the α(2)-isoform of the Na,K-ATPase.  相似文献   

13.
Bacillus macerans cyclodextrin glycosyltransferase (CGTase) was used to convert dodecyl-β-maltoside (DDM) to dodecyl-β-maltooctaoside (DDMO) using α-cyclodextrin (α-CD) or starch as glycosyl donors. At 300 mM α-CD, varied DDM concentration and 60 °C, the reaction obeyed Michaelis-Menten kinetics with a Km value of 18 mM and a Vmax value of 100 U/mg enzyme. However, at 25 mM α-CD the reaction rate decreased with increasing DDM concentration (5-50 mM), and when the α-CD concentration was varied at fixed DDM concentration an S shaped curve was obtained. The deviations from Michaelis-Menten kinetics were interpreted as being caused by formation of inclusion complexes between α-CD and DDM and by micellation of DDM. To achieve a high reaction rate, a high concentration of free α-CD is necessary, since α-CD in the form of a complex has low reactivity. When starch is used as glycosyl donor in the CGTase catalyzed alkyl glycoside elongation reaction, it is thus important to choose reaction conditions under which the cyclization of starch to α-CD is efficient.  相似文献   

14.
We determined whether activation of phosphatidylinositol-specific phospholipase C (PI-PLC) and a subsequent increase in cytosolic calcium concentration ([Ca2+]i) was an obligatory signaling event mediating the increase in transendothelial permeability induced by bradykinin (BK) and α-thrombin (α-T). Both BK and α-T (each at a concentration range of 0.01–1 μM) caused dose-dependent increases in transendothelial 125I-albumin permeability in cultured bovine pulmonary artery endothelial cell monolayers. Both agonists also produced a rise in inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] by 10 sec that was followed by a prolonged increase in [Ca2+]i. Pretreatment of endothelial cells with the PLC inhibitor, 1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dion [(U73122) at 10 μM for 15 min], prevented the increases in Ins(1,4,5)P3 and [Ca2+]i induced by both BK and α-T. However, inhibition of PLC with U73122 or another PLC inhibitor, neomycin, did not prevent the increase in endothelial permeability induced by either agonist. In contrast, depletion of cellular protein kinase C (PKC) with phorbol-12-myristate 13-acetate (0.01 μM for 20 hr) increased both BK- and α-T-induced phosphoinositide turnover but inhibited the agonist-induced increase in permeability. A PKC inhibitor, staurosporine (5 μM) likewise inhibited the BK-induced increase in endothelial cell permeability to albumin. We conclude that increases in endothelial permeability induced by the inflammatory mediators, BK and thrombin, can occur independently of PLC activation and increased [Ca2+]i but that a PKC-dependent pathway is required for the permeability response. J. Cell. Physiol. 173:387–396, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
BACKGROUND : The covalent modification of interferon (IFN) α2b with monomethyoxy polyethylene glycol (PEG) reduces its clearance rate and increases its half‐life. High doses of interferon (IFN) α2b have previously been shown to affect maintenance of pregnancy in rhesus monkeys. Given the role of ovarian hormones in reproductive function and pregnancy, this study was conducted to assess the effects of PEG‐IFNα2b or IFNα2b (comparative control) on ovarian hormones and menstrual cyclicity in cynomolgus monkeys. In addition, the potential for reversibility of PEG‐IFNα2b or IFNα2b‐related observations was assessed. METHODS : Monkeys were administered 3,105 µg/m2 human recombinant (hr) IFNα2b or 52, 262, or 4,239 µg/m2 PEG‐hr‐IFNα2b every other day for one menstrual cycle, followed by a post‐dose period of up to two menstrual cycles. RESULTS : Monkeys administered 3,105 µg/m2 hr‐IFNα2b or 52, 262, or 4,239 µg/m2 PEG‐hr‐IFNα2b exhibited transient decreases in food consumption, leukocyte and erythrocyte parameters. Monkeys administered 3,105 µg/m2 hr‐IFNα2b exhibited lengthened menstrual cycles that were associated with a delay in reaching peak ovarian hormone levels and lower respective peak concentrations. Similarly, monkeys administered 4,239 µg/m2 PEG‐hr‐IFNα2b exhibited lengthened menstrual cycles and a delay in reaching peak ovarian hormone levels and slightly lower respective peak concentrations. Post‐dosing menstrual cycle length, estradiol and progesterone profiles exhibited evidence of recovery in both the hr‐IFNα2b and the high‐dose PEG‐hr‐IFNα2b groups. CONCLUSIONS : Administration of hr‐IFNα2b or PEG‐hr‐IFNα2b at high doses to cynomolgus monkeys resulted in similar effects on menstrual cycles, estradiol and progesterone profiles, and exhibited evidence of reversibility upon cessation of dosing. These results suggest that the previously observed high‐dose IFNα‐related effects on the maintenance of pregnancy in monkeys are likely the result of altered ovarian function. Birth Defects Res (Part B) 86:29‐39, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
N‐(2‐aminoethyl)ethanolamine (AEEA) caused aneurysms of the great vessels in rats exposed in utero and during the first days post partum, exacerbated by postnatal treatment of the lactating dams (Moore et al., 2012. Birth Defects Res B Dev Reprod Toxicol [95:116‐122]). The purpose of this work was to examine the systemic availability of AEEA during gestation and early lactation. The absorption of AEEA was determined following oral administration to nonpregnant and pregnant female Wistar rats. A single dose administered by gavage (0.5 or 50 mg/kg) on gestation day 18 was rapidly and extensively (>90%) absorbed from the gastrointestinal tract (absorption t1/2 = 0.1–0.2 hr). Elimination from the plasma followed a biphasic pattern, with a rapid elimination phase (t1/2 α = 1.6–1.8 hr) followed by a slower phase (t1/2 β = 16.7–17.3 hr). Following repeated gavage administration during gestation day 17 to 19, 14C‐AEEA–derived radioactivity readily partitioned into the fetus and was evenly distributed therein, but cleared approximately twofold slower from the fetal blood and tissues than the maternal blood and chorioallantoic placenta. When administered to lactating dams during lactation days 1 to 12, 14C‐AEEA–derived radioactivity preferentially partitioned into the milk reaching levels that were between 1.6‐ and 2.5‐fold higher than the maternal blood. Although the concentration of AEEA equivalents in the maternal blood remained quite consistent, the concentration in the milk fell by almost 40% between lactation days 4 and 12, probably reflecting an increase in milk production over this same period. We confirm exposure of the offspring to AEEA both in utero and during lactation, but that AEEA does not appear to specifically concentrate in the great vessels.  相似文献   

17.
Fibroblast Growth Factor (FGF) stimulates quiescent Swiss 3T3 cells to initiate DNA synthesis and divide. Cells begin to enter the S-phase after a lag of 13–15 hr, and the rate of initiation of DNA synthesis in the population can be quantified by a first order rate constant, k. A subsaturating concentration of FGF may establish the lag phase, while the value of k is dependent on the FGF concentration present during the second half of the lag phase. Insulin and hydrocortisone enhance the effect of FGF by increasing k without changing the lag phase, and they can act when added at any time after FGF. Prostaglandin E1 (PGE1) causes a decrease in k and a lengthening of the lag phase, and acts only when added during the first 8 hr. None of these agents stimulate DNA synthesis in the absence of FGF. These results show that the stimulation of growth by FGF follows the same basic pattern as was previously shown with Prostaglandin F (PGF). However, since hydrocortisone inhibits stimulation by PGF when added during the first 4 hr of the lag phase, there are clearly differences in some events stimulated by the two growth factors.  相似文献   

18.
The accumulation of α- and β-globin mRNA sequences in murine erythroleukemia cells (MELC) treated with various inducers has been studied using specific α- and β-globin complementary DNAs (cDNAs). In cells cultured with dimethylsulfoxide (Me2SO), hexamethylene bisacetamide (HMBA) or butyric acid, accumulation of α-globin mRNA is detectable after 16, 12 and 8 hr of culture, respectively. An increase in β-globin mRNA sequences is not detected until 20–24 hr after culture. In cells exposed to hemin, both α- and β-globin mRNAs are detectable by 6 hr of culture, and a constant ratio of αβ-mRNA is maintained during induction. In maximally induced cells, the αβ-globin mRNA ratios are approximately 1 in cells induced by Me2SO and HMBA, and 0.66 and 0.3–0.50 in cells induced by butyric acid and hemin, respectively. Thus different inducers of erythroid differentiation in MELC lead to different times of onset of the expression of α- and β-like genes. In addition, the relative accumulation of α- and β-globin mRNAs in induced cells differs with various types of inducers.  相似文献   

19.
Measurement of acetylcholine turnover rate in discrete areas of rat brain   总被引:6,自引:0,他引:6  
The turnover rate of ACh was estimated in brain stem, two cortical areas and striatum of rat brain. The turnover rate was highest in the striatum (1.3 μmoles/g/hr); lowest in brain stem (0.092 μmoles/g/hr); and intermediate values were observed in limbic and occipital cortex. The highest ACh concentrations were measured in striatum, those in brain stem were intermediate but in the two cortical areas the ACh concentrations were the lowest. The results of the turnover estimations with the finite difference method yielded values similar to those obtained with the procedure described in this paper. Moreover, once the baseline was established, this method could be reliably used to estimate turnover rate using a single infusion time. The latter simplication would be very useful to compare ACh turnover rate in drug studies.  相似文献   

20.
The aim was to investigate the effect of the arborvitae seed on cognitive function and α7-nicotinic acetylcholine receptor (α7nAChR) protein expression of the hippocampus in model rats with Alzheimer’s disease (AD). Thirty-six adult Wistar rats were randomly divided into the control, test, and drug groups. A dose of Aβ1–40 was injected into the rats’ hippocampus in the test and drug groups and the control rats were injected with the same amount of normal saline. After the model was successful, the rats in the control and test groups were gavaged with sodium carboxymethyl cellulose (500 mg/kg) and the rats in the drug group were gavaged with arborvitae seed powder (500 mg/kg) for 15 days. The Morris water maze test was used for cognitive function. The effect of arborvitae seed on α7nAChR protein immunoreactivity on the hippocampus neurons was studied by the immunohistochemistry method. Behavioral tests showed that the mean escape latencies and search time of the test group were obviously longer than the control and drug groups. The percentage of the search distance of the test group was shorter than that of the control and drug groups. The immunohistochemistry results are as follows: α7nAChR-positive cells and optical density in the hippocampus of the rats in the test group are less than that of the rats in the control and drug groups (all P < 0.01). Arborvitae seed can treat AD by increased expression of α7nAChR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号