首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
MicroRNAs represent a class of short (approximately 22 nt), noncoding regulatory RNAs involved in development, differentiation, and metabolism. We describe a novel microarray platform for genome-wide profiling of mature miRNAs (miChip) using locked nucleic acid (LNA)-modified capture probes. The biophysical properties of LNA were exploited to design probe sets for uniform, high-affinity hybridizations yielding highly accurate signals able to discriminate between single nucleotide differences and, hence, between closely related miRNA family members. The superior detection sensitivity eliminates the need for RNA size selection and/or amplification. MiChip will greatly simplify miRNA expression profiling of biological and clinical samples.  相似文献   

5.
We have established the structures of 10 human microRNA (miRNA) precursors using biochemical methods. Eight of these structures turned out to be different from those that were computer-predicted. The differences localized in the terminal loop region and at the opposite side of the precursor hairpin stem. We have analyzed the features of these structures from the perspectives of miRNA biogenesis and active strand selection. We demonstrated the different thermodynamic stability profiles for pre-miRNA hairpins harboring miRNAs at their 5'- and 3'-sides and discussed their functional implications. Our results showed that miRNA prediction based on predicted precursor structures may give ambiguous results, and the success rate is significantly higher for the experimentally determined structures. On the other hand, the differences between the predicted and experimentally determined structures did not affect the stability of termini produced through "conceptual dicing." This result confirms the value of thermodynamic analysis based on mfold as a predictor of strand section by RNAi-induced silencing complex (RISC).  相似文献   

6.

Background  

MicroRNAs (miRNAs), small non-coding RNAs of 19 to 25 nt, play important roles in gene regulation in both animals and plants. In the last few years, the oligonucleotide microarray is one high-throughput and robust method for detecting miRNA expression. However, the approach is restricted to detecting the expression of known miRNAs. Second-generation sequencing is an inexpensive and high-throughput sequencing method. This new method is a promising tool with high sensitivity and specificity and can be used to measure the abundance of small-RNA sequences in a sample. Hence, the expression profiling of miRNAs can involve use of sequencing rather than an oligonucleotide array. Additionally, this method can be adopted to discover novel miRNAs.  相似文献   

7.

Background  

The study of microRNAs (miRNAs) is attracting great considerations. Recent studies revealed that miRNAs play as important regulators of gene expression and some even as cancer players or inhibitors. Many studies try to discover new miRNAs and reveal the miRNA expression profile in cancer using a SAGE-based total RNA clone method. However, the data processing of this method is labor-intensive with several different biological databases and more than ten data processing steps involved.  相似文献   

8.
9.
《Biomarkers》2013,18(5):463-470
To identify micro RNA (miRNA) biomarker candidates for early detection of breast cancer and detection of minimal residual breast cancer, we performed miRNA expression profiling in pooled RNA samples from breast tumors, and from bone marrow mononuclear cells, peripheral blood mononuclear cells and plasma from healthy controls. We found substantially higher levels of five miRNAs in the breast tumors compared to the normal samples. However, validation of these miRNA levels, and seven other candidates selected from the literature, in individual samples from healthy controls and patients with non-metastatic breast cancer did not suggest further examination of their biomarker potential.  相似文献   

10.
To identify micro RNA (miRNA) biomarker candidates for early detection of breast cancer and detection of minimal residual breast cancer, we performed miRNA expression profiling in pooled RNA samples from breast tumors, and from bone marrow mononuclear cells, peripheral blood mononuclear cells and plasma from healthy controls. We found substantially higher levels of five miRNAs in the breast tumors compared to the normal samples. However, validation of these miRNA levels, and seven other candidates selected from the literature, in individual samples from healthy controls and patients with non-metastatic breast cancer did not suggest further examination of their biomarker potential.  相似文献   

11.
12.
The benefit and precision of blood diagnosis by quantitative real-time PCR (qPCR) is limited by sampling procedures and RNA extraction methods. We have compared five different RNA extraction protocols from bovine blood regarding RNA and miRNA yield, quality, and most reproducible data in the qRT-PCR with the lowest point of quantification. Convincing results in terms of highest quantity, quality, and best performance for mRNA qPCR were obtained by leukocyte extraction following blood lysis as well as extraction of PAXgene stabilized blood. The best microRNA qPCR results were obtained for samples extracted by the leukocyte extraction method.  相似文献   

13.
14.
Formalin-fixed paraffin-embedded (FFPE) tissue samples are a potentially valuable resource of expression information for medical research, but are under-utilized due to degradation and modification of the RNA. Using a random primer-based RNA amplification strategy, we have evaluated multiple protocols for the extraction and isolation of RNA from FFPE samples. We found that the RecoverAll RNA isolation procedure with three or four slices (ten-microns in thickness), supplemented with additional DNAse, gave optimal results. RNA integrity as assessed by Agilent Bioanalyzer, and amplification of the 28S ribosomal RNA, were predictive for the number of genes detected on Affymetrix arrays. We obtained expression data for colon and lung tumor and normal FFPE samples and matched frozen samples and found a high correlation between frozen and matched FFPE samples (R2 between 0.82 and 0.89), while the signature sets in tumor versus normal comparisons were also quite similar. QPCR confirmed all 16 of the differential expression results from the microarrays that we tested. Differentially expressed signature genes from tumor versus matched normal FFPE tissue from colon and lung were identified as cancer-related, with 95 colon tumor and 67 lung tumor genes identified, respectively.  相似文献   

15.
16.

Background

Cancer is a heterogeneous disease caused by genomic aberrations and characterized by significant variability in clinical outcomes and response to therapies. Several subtypes of common cancers have been identified based on alterations of individual cancer genes, such as HER2, EGFR, and others. However, cancer is a complex disease driven by the interaction of multiple genes, so the copy number status of individual genes is not sufficient to define cancer subtypes and predict responses to treatments. A classification based on genome-wide copy number patterns would be better suited for this purpose.

Method

To develop a more comprehensive cancer taxonomy based on genome-wide patterns of copy number abnormalities, we designed an unsupervised classification algorithm that identifies genomic subgroups of tumors. This algorithm is based on a modified genomic Non-negative Matrix Factorization (gNMF) algorithm and includes several additional components, namely a pilot hierarchical clustering procedure to determine the number of clusters, a multiple random initiation scheme, a new stop criterion for the core gNMF, as well as a 10-fold cross-validation stability test for quality assessment.

Result

We applied our algorithm to identify genomic subgroups of three major cancer types: non-small cell lung carcinoma (NSCLC), colorectal cancer (CRC), and malignant melanoma. High-density SNP array datasets for patient tumors and established cell lines were used to define genomic subclasses of the diseases and identify cell lines representative of each genomic subtype. The algorithm was compared with several traditional clustering methods and showed improved performance. To validate our genomic taxonomy of NSCLC, we correlated the genomic classification with disease outcomes. Overall survival time and time to recurrence were shown to differ significantly between the genomic subtypes.

Conclusions

We developed an algorithm for cancer classification based on genome-wide patterns of copy number aberrations and demonstrated its superiority to existing clustering methods. The algorithm was applied to define genomic subgroups of three cancer types and identify cell lines representative of these subgroups. Our data enabled the assembly of representative cell line panels for testing drug candidates.  相似文献   

17.
18.
19.
20.
《Epigenetics》2013,8(1):161-172
Epigenetic dysregulation contributes to the high cardiovascular disease burden in chronic kidney disease (CKD) patients. Although microRNAs (miRNAs) are central epigenetic regulators, which substantially affect the development and progression of cardiovascular disease (CVD), no data on miRNA dysregulation in CKD-associated CVD are available until now. We now performed high-throughput miRNA sequencing of peripheral blood mononuclear cells from ten clinically stable hemodialysis (HD) patients and ten healthy controls, which allowed us to identify 182 differentially expressed miRNAs (e.g., miR-21, miR-26b, miR-146b, miR-155). To test biological relevance, we aimed to connect miRNA dysregulation to differential gene expression. Genome-wide gene expression profiling by MACE (Massive Analysis of cDNA Ends) identified 80 genes to be differentially expressed between HD patients and controls, which could be linked to cardiovascular disease (e.g., KLF6, DUSP6, KLF4), to infection / immune disease (e.g., ZFP36, SOCS3, JUND), and to distinct proatherogenic pathways such as the Toll-like receptor signaling pathway (e.g., IL1B, MYD88, TICAM2), the MAPK signaling pathway (e.g., DUSP1, FOS, HSPA1A), and the chemokine signaling pathway (e.g., RHOA, PAK1, CXCL5). Formal interaction network analysis proved biological relevance of miRNA dysregulation, as 68 differentially expressed miRNAs could be connected to 47 reciprocally expressed target genes. Our study is the first comprehensive miRNA analysis in CKD that links dysregulated miRNA expression with differential expression of genes connected to inflammation and CVD. After recent animal data suggested that targeting miRNAs is beneficial in experimental CVD, our data may now spur further research in the field of CKD-associated human CVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号