首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mucins are macromolecules lying the cells in contact with external environment and protect the epithelium against constant attacks such as digestive fluids, microorganisms, pollutants, and toxins. Mucins are the main components of mucus and are synthesized and secreted by specialized cells of the epithelium (goblet cells, cells of mucous glands) or non mucin-secreting cells. Human mucin genes show common features: large size of their mRNAs, large nucleotide tandem repeat domains, complex expression both at tissular and cellular level. Since 1987, 21 MUC symbols have been used to designate genes encoding O-glycoproteins containing tandem repeat domains rich in serine, threonine and proline. Some of these genes encode true mucins while others encode non mucin adhesion O-glycoproteins. In this paper, we propose a classification based on sequence similarities and expression areas. Two main families can be distinguished: secreted mucins or gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6), and membrane-bound mucins (MUC1, MUC3, MUC4, MUC12, MUC17). Muc-deficient mice will provide important models in the study of functional relationships between these two mucin families.  相似文献   

2.
Jono H  Lim JH  Xu H  Li JD 《PloS one》2012,7(1):e31049
CARD-containing MAGUK protein 1 (CARMA1) plays a crucial role in regulating adaptive immune responses upon T-cell receptor (TCR) activation in T cells. Its role in regulating host mucosal innate immune response such as upregulation of mucin remains unknown. Here we show that CARMA1 acts as a key signaling mediator for synergistic upregulation of MUC5AC mucin by bacterium nontypeable Haemophilus influenzae (NTHi) and phorbol ester PMA in respiratory epithelial cells. NTHi-induced TLR-dependent TRAF6-MKK3-p38 MAPK signaling pathway synergizes with PKCθ-MEK-ERK signaling pathway. CARMA1 plays a crucial role in mediating this synergistic effect via TRAF6, thereby resulting in synergistic upregulation of MUC5AC mucin. Thus our study unveils a novel role for CARMA1 in mediating host mucosal innate immune response.  相似文献   

3.
Bovine type I collagen consists of two α1 and one α2 chains, containing the internal triple helical regions and the N- and C-terminal telopeptides. In industries, it is frequently digested with porcine pepsin to produce a triple helical collagen without the telopeptides. However, the digestion mechanism is not precisely understood. Here, we performed a mass spectrometric analysis of the pepsin digest of the N-terminal telopeptide pQLSYGYDEKSTGISVP (1–16) in the α1 chain. When purified collagen was digested, pQLSYGY (1–6) and pQLSYGYDEKSTG (1–12) were identified, while DEKSTG (7–12) was not. When the N-terminal telopeptide mimetic synthetic peptide pQLSK(MOCAc)GYDEKSTGISK(Dnp)P-NH2 was digested, pQLSK(MOCAc)GYDEKSTG (1–12) and ISK(Dnp)P-NH2 (13?16) were readily identified, pQLSK(MOCAc)GY (1?6) and DEKSTGISK(Dnp)P-NH2 (7?16) were weakly detected, and DEKSTG (7–12) was hardly identified. These results suggest that pepsin preferentially cleaves Tyr6–Asp7 and less preferentially Gly12–Ile13. They also suggest that the former cleavage requires native collagen structure, while the latter cleavage does not.  相似文献   

4.
A genomic fragment containing the 5 boundary of the von Willebrand factor pseudogene was cloned, partially sequenced and used for in situ hybridization experiments on metaphase spreads from a Philadelphia chromosome (Ph1)-positive chronic myelogenous leukemia patient. Data obtained indicate that the von Willebrand factor pseudogenic region is centromeric to the breakpoint cluster region on 22q11.2. This probe could be used for the study of deletions in the DiGeorge syndrome.  相似文献   

5.
Binding of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF) initiates platelet adhesion to disrupted vascular surface under arterial blood flow. Flow exerts forces on the platelet that are transmitted to VWF-GPIbα bonds, which regulate their dissociation. Mutations in VWF and/or GPIbα may alter the mechanical regulation of platelet adhesion to cause hemostatic defects as found in patients with von Willebrand disease (VWD). Using a biomembrane force probe, we observed biphasic force-decelerated (catch) and force-accelerated (slip) dissociation of GPIbα from VWF. The VWF A1 domain that contains the N-terminal flanking sequence Gln1238–Glu1260 (1238-A1) formed triphasic slip-catch-slip bonds with GPIbα. By comparison, using a short form of A1 that deletes this sequence (1261-A1) abolished the catch bond, destabilizing its binding to GPIbα at high forces. Importantly, shear-dependent platelet rolling velocities on these VWF ligands in a flow chamber system mirrored the force-dependent single-bond lifetimes. Adding the Gln1238–Glu1260 peptide, which interacted with GPIbα and 1261-A1 but not 1238-A1, to whole blood decreased platelet attachment under shear stress. Soluble Gln1238–Glu1260 reduced the lifetimes of GPIbα bonds with VWF and 1238-A1 but rescued the catch bond of GPIbα with 1261-A1. A type 2B VWD 1238-A1 mutation eliminated the catch bond by prolonging lifetimes at low forces, a type 2M VWD 1238-A1 mutation shifted the respective slip-catch and catch-slip transition points to higher forces, whereas a platelet type VWD GPIbα mutation enhanced the bond lifetime in the entire force regime. These data reveal the structural determinants of VWF activation by hemodynamic force of the circulation.  相似文献   

6.
The N-terminal cyanogen bromide fragment from the Bβ chain of bovine fibrinogen was isolated, and its molecular weight was estimated to be approximately 14,000–15,500. The ratio of the Michaelis-Menten constants, kcatKm, for its hydrolysis by bovine thrombin was found to be 3 × 10?7 [(NIH unit/liter)s]?1, indicating that the Bβ fragment is a poor substrate for thrombin compared to the corresponding Aα chain fragment. This value of kcatKm is too small to account for the rate of release of fibrinopeptide B from fibrinogen by thrombin. It is suggested that, while the Aα chain contains all of the amino acid residues necessary to interact with thrombin, the Bβ chain does not; i.e., some of the binding sites that are used in the hydrolysis of the Bβ chain are assumed to be located on either the α or γ chains of fibrinogen. An alternative hypothesis is that, after the Bβ chain fragment is removed from the fibrinogen molecule, it does not have the proper conformation to be hydrolyzed by thrombin.  相似文献   

7.
Conformational energy computations have been carried out on the N-acetyl-N′-methylamide of 5-hydroxytryptophan (5OH-Trp) using ECEPP/3. As observed with tryptophan (Trp), the most preferred conformation about theC α ?C β bond of the side chain isg + ort. This preference is reduced to only thet conformational state when 5-hydroxyTrp is in the middle of a right-handed poly(l-alanine)α-helix. A similar result has been obtained with Trp [Pielaet al. (1987),Biopolymers 1987, 1273–1286]. These results suggest that replacement of Trp by its analog 5-hydroxyTrp may be tolerated in anα-helix. To test this hypothesis, we have replaced Trp by 5OH-Trp in the fifth helices of two functionally active mutants of the N-terminal domain of the bacteriophage λ repressor. Computations on the packing of these helices have shown that no significant structural changes result from the replacement of Trp by 5OH-Trp. The DNA-binding activity of these mutants, as assessed indirectly through geometrical parameters, is also unaltered.  相似文献   

8.
9.
Summary The cytochemical localization of 5-nucleotidase (5-AMPase), and its validity, were investigated in parotid and submandibular acinar cells of a rat. Biochemical determinations showed that adequate treatment with glutaraldehyde could minimize the loss of enzymatic activity, and that 5-AMPase and non-specific alkaline phosphatase (-GPase) possessed different pH optima.The cytochemical distribution of the reaction products from the 5-AMPase activity was distinct from those of -GPase. 5-AMPase activity was localized on the surface membranes of acinar, ductal and myoepithelial cells of both salivary glands. -GPase activity was evenly distributed on the entire plasma membranes of myoepithelial cells and on the basal plasmalemma of acinar cells. The reaction products, which appeared on the luminal and lateral plasma membranes of the acinar cells, were presumed to reflect the presence of 5-AMPase, while those on the myoepithelial surface and basal plasma membranes of the acinar cells demonstrated both 5-AMPase and -GPase.The results indicate that 5-AMPase activity can be utilized as a reliable marker enzyme of plasma membranes in the salivary acinar cells.  相似文献   

10.
Heparin has been shown to exhibit lower affinity for the antithrombin-thrombin complex than for antithrombin alone (Carlstrom, A.-S., Lieden, K., and Bjork, I. (1977) Thromb. Res. 11, 785-797), suggesting that structural alterations in antithrombin may accompany its reaction with thrombin. The hydroxy-nitrobenzyl (HNB) group attached to a unique tryptophan has been used in the present study as an extrinsic probe for localization of conformational changes to the heparin-binding region within antithrombin III using immunochemical and spectral techniques. Site-specific modification of tryptophan-49 in antithrombin with the hydroxynitrobenzyl reagent blocks heparin binding to the protein and provides a chemical label in the heparin-binding region of the protein (Blackburn, M. N., Smith, R. L., Carson, J., and Sibley, C. C. (1984) J. Biol. Chem. 259, 939-941). Antibodies specific for the hydroxynitrobenzyl hapten, which bind to HNB-tryptophan-49 in antithrombin, were used to detect a change in conformation in the region of tryptophan-49 which occurs upon thrombin binding to antithrombin. This thrombin-induced structural change was also apparent from spectral perturbations which were detected with the environmentally sensitive HNB moiety. Thus, the HNB group was used as an immunochemical probe as well as a spectral reporter group to provide insight into an allosteric mechanism of control in the catalytic role of heparin. The thrombin-promoted alteration of the structure in the heparin-binding region is presumably responsible for recycling of heparin, allowing it to catalyze further reactions between antithrombin and thrombin.  相似文献   

11.
Summary A dibenzofuran-based β-turn mimic has been incorporated in the B12–29 fragment of the B1 domain of streptococcal protein G. This amino acid sequence adopts a β-hairpin structure in the complete B1 domain (B12–56). The modified peptide was studied by CD and NMR spectroscopy and its solution behavior was compared with the conformation adopted by the same sequence in the modified B1 domain.  相似文献   

12.
13.
Adenosine 5′-phosphosulfate kinase (APSK) catalyzes the phosphorylation of adenosine 5′-phosphosulfate (APS) to 3′-phosphoadenosine-5′-phosphosulfate (PAPS). Crystallographic studies of APSK from Arabidopsis thaliana revealed the presence of a regulatory intersubunit disulfide bond (Cys86–Cys119). The reduced enzyme displayed improved catalytic efficiency and decreased effectiveness of substrate inhibition by APS compared with the oxidized form. Here we examine the effect of disulfide formation and the role of the N-terminal domain on nucleotide binding using isothermal titration calorimetry (ITC) and steady-state kinetics. Formation of the disulfide bond in A. thaliana APSK (AtAPSK) inverts the binding affinities at the ATP/ADP and APS/PAPS sites from those observed in the reduced enzyme, consistent with initial binding of APS as inhibitory, and suggests a role for the N-terminal domain in guiding nucleotide binding order. To test this, an N-terminal truncation variant (AtAPSKΔ96) was generated. The resulting protein was completely insensitive to substrate inhibition by APS. ITC analysis of AtAPSKΔ96 showed decreased affinity for APS binding, although the N-terminal domain does not directly interact with this ligand. Moreover, AtAPSKΔ96 displayed reduced affinity for ADP, which corresponds to a loss of substrate inhibition by formation of an E·ADP·APS dead end complex. Examination of the AtAPSK crystal structure suggested Arg93 as important for positioning of the N-terminal domain. ITC and kinetic analysis of the R93A mutant also showed a complete loss of substrate inhibition and altered nucleotide binding affinities, which mimics the effect of the N-terminal deletion. These results show how thiol-linked changes in AtAPSK alter the energetics of binding equilibria to control its activity.  相似文献   

14.
Zhou HX 《FEBS letters》2003,552(2-3):160-162
The myristoylated N-terminal latching to the C-terminal lobe of c-Abl was recently demonstrated to be an important regulatory element for the kinase, playing a role similar to that of the tyrosine-phosphorylated C-terminal tail of c-Src. A potential mechanism for activating c-Abl is the dissociation of the myristoylated N-terminal latch. How often does this latch spontaneously come off? A recent theoretical model along with the experimental results of Superti-Furga, Kuriyan, and co-workers suggests that the equilibrium fraction of c-Abl in which the myristoylated N-terminal is unlatched is approximately 0.5%.  相似文献   

15.
16.
Previously, we have shown that RalA, a calmodulin (CaM)-binding protein, binds to the C2 region in the C-terminal of PLC-δ1, and increases its enzymatic activity. Since PLC-δ1 contains a CaM-like region in its N-terminus, we have investigated if RalA can also bind to the N-terminus of PLC-δ1. Therefore, we created a GST-PLC-δ1 construct consisting of the first 294 amino acids of PLC-δ1 (GST-PLC-δ11-294). In vitro binding experiments confirmed that PLC-δ11-294 was capable of binding directly to RalA. W-7 coupled to polyacrylamide beads bound pure PLC-δ1, demonstrating that PLC-δ1 contains a CaM-like region. Competition assays with W-7, peptides representing RalA and the newly identified RalB CaM-binding regions, or the IQ peptide from PLC-δ1 were able to inhibit RalA binding to PLC-δ11-294. This study demonstrates that there are two binding sites for RalA in PLC-δ1 and provides further insight into the role of Ral GTPase in the regulation of PLC-δ1 function.  相似文献   

17.
18.
19.
20.
Alzheimer disease neurons are characterized by extraneuronal plaques formed by aggregated amyloid-β peptide and by intraneuronal tangles composed of fibrillar aggregates of the microtubule-associated Tau protein. Tau is mostly found in a hyperphosphorylated form in these tangles. Glycogen synthase kinase 3β (GSK3β) is a proline-directed kinase generally considered as one of the major players that (hyper)phosphorylates Tau. The kinase phosphorylates mainly (Ser/Thr)-Pro motifs and is believed to require a priming activity by another kinase. Here, we use an in vitro phosphorylation assay and NMR spectroscopy to characterize in a qualitative and quantitative manner the phosphorylation of Tau by GSK3β. We find that three residues can be phosphorylated (Ser-396, Ser-400, and Ser-404) by GSK3β alone, without priming. Ser-404 is essential in this process, as its mutation to Ala prevents all activity of GSK3β. However, priming enhances the catalytic efficacy of the kinase, as initial phosphorylation of Ser-214 by the cAMP-dependent protein kinase (PKA) leads to the rapid modification by GSK3β of four regularly spaced additional sites. Because the regular incorporation of negative charges by GSK3β leads to a potential parallel between phospho-Tau and heparin, we investigated its interaction with the heparin/low density lipoprotein receptor binding domain of human apolipoprotein E. We indeed observed an interaction between the GSK3β-promoted regular phospho-pattern on Tau and the apolipoprotein E fragment but none in the absence of phosphorylation or the presence of an irregular phosphorylation pattern by the prolonged activity of PKA. Apolipoprotein E is therefore able to discriminate and interact with specific phosphorylation patterns of Tau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号