首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant-related performance may be one of the most important factors in the selection of host plants by insect herbivores. We investigated the importance of plant-related performance in host selection by the willow leaf beetle, Plagiodera versicolora (Laicharting) (Coleoptera: Chrysomelidae), on four willow species: Salix chaenomeloides Kimura, Salix eriocarpa Fr. et Sav., Salix   integra Thunb., and Salix serissaefolia Kimura (Salicaceae). Bagging experiments in the field revealed that the performance of P. versicolora adults and larvae differed significantly among willow species under enemy-free conditions and at constant densities. Egg clutch and larval abundance were positively related to adult abundance. Plagiodera versicolora adults did not discriminate strongly among willow species for feeding and oviposition. Larval performance did not differ among willow species in the presence of natural enemies, suggesting that interspecific differences in host quality were overridden by mortality from natural enemies. Adult and egg clutch abundance of P. versicolora changed seasonally despite the temporal stability of adult and larval performance under enemy-free field conditions. Thus, plant-related performance of P. versicolora adults and larvae may contribute little to population growth and temporal dynamics of host use in P. versicolora . Potential factors that reduce discrimination of P. versicolora among host willow species are discussed.  相似文献   

2.
Genes involved in major biological functions, such as reproductive or cognitive functions, are choice targets for natural selection. However, the extent to which these genes are affected by selective pressures remains undefined. The apparent clustering of these genes on sex chromosomes makes this genomic region an attractive model system to study the effects of evolutionary forces. In the present study, we analysed the genetic diversity of a X-linked microsatellite in 1410 X-chromosomes from 10 different human populations. Allelic frequency distributions revealed an unexpected discrepancy between the sexes. By evaluating the different scenarios that could have led to this pattern, we show that sex-specific selection on the tightly linked VCX gene could be the most likely cause of such a distortion.  相似文献   

3.
Can tolerance traits impose selection on herbivores?   总被引:6,自引:0,他引:6  
Plant tolerance reduces the fitness consequences of herbivore and natural enemy damage, while resistance reduces the amount of damage suffered. In contrast to resistance, tolerance is often assumed to not affect herbivore performance and evolution. Evidence from the literature, however, suggests that it is possible for plant tolerance to affect herbivore performance and evolution, and potentially plant–herbivore coevolution. First, for cases when genetic correlations between resistance and tolerance are due to pleiotropy, the genes and loci for tolerance and resistance are the same, and as such both traits will affect herbivore performance directly. Second, it is possible that the physiological basis and mechanisms of plant tolerance – for example, changes in plant physiology and resource allocation – directly alter herbivore fitness characters. In this paper, I review the evidence for these potential effects of plant tolerance on herbivore performance, and suggest straightforward experiments to evaluate these possibilities. More generally, I propose that this untested assumption is constraining our view of plant–herbivore coevolution.  相似文献   

4.
5.
It is widely known that many upland-breeding shorebirds tend to nest on plateaus but to date no studies have put forward explanations for this phenomenon. We examined the effect of slope and habitat on the distribution of ground-nesting golden plover Pluvialis apricaria at two study sites in County Durham, U.K. Golden plovers showed strong selection for nesting on flat ground. Habitat significantly affected nest-site location on one study site (heather burnt within the past 2 years was favoured and older stands of heather were avoided) but not on the other. Fifty-nine per cent of all nests failed. We attributed 95% of all losses to predation. Seventy-five per cent of nests, in which the predator was identified, were taken by ground predators, mainly stoats Mustela erminea . Nests on flat ground had significantly higher rates of survival than those on slopes. Nest survival did not vary significantly with habitat type nor with vegetation height or density around the nest. Neither habitat type, vegetation height nor vegetation density around nests differed between nests on slopes and on flat ground. In addition, individuals that nested on flat ground tended to have less black on their underparts (a suggested indicator of dominance). We suggest that birds nesting on slopes are less efficient at avoiding nest predation than those nesting on the flat. The nature or degree of a bird's response to a predator may be related to the efficiency of individual anti-predator responses and/or to visibility from the nest. This study cannot differentiate between these two explanations. We encourage further work to investigate differences in behaviour between individuals nesting on slopes and those on flat ground.  相似文献   

6.
Standard quantitative genetic theory predicts that when a trait is exposed to selection, the between-generation change in the phenotypic mean, Δz?i, will be equal to the product of the trait's heritability and the selection differential, h2S. By extension, this theory implies that if a number of replicate populations are exposed to varying intensities of selection, the between-generation changes in means should covary with the selection differential applied. This relationship offers an opportunity for a statistical test to detect evolutionary change when selection is measured in replicate populations. If an evolutionary response to phenotypic selection occurs, the regression of over Si, where i indicates population, will have a positive slope. This statistical test was applied to data on the insect Eurosta solidaginis (Diptera: Tephritidae). The larvae of this fly induce galls on the stems of the host plant, Solidago altissima (Asteraceae). Previous work has shown that gall size is a heritable trait of the insect. Further, size-dependent attack on Eurosta larvae by parasitoids selects for larger gall size (Weis and Abrahamson, 1986). Long-term data on phenotypic selection in 16 populations across 5 generations were analyzed for selection response. Apparent upward evolutionary responses were seen in 2 of the 4 between-generation transitions. However, no response was seen when the analysis was applied to the cumulative change in gall size. Examination of the data suggested that some of the change in mean gall size was a developmental response to spatial and temporal variation in the environment. Non-linear developmental effects of environment, when combined with non-linear fitness functions, can induce a spurious selection response; these non-linear relationships can account for the apparent evolutionary change gall size found in the by-generation analysis. Thus, there is no reliable evidence for evolutionary change in Eurosta's gall size over the generations studied. Stasis of gall size in the face of ongoing selection may be due to counterbalancing selection on the gallmaker imposed by host plant resistance.  相似文献   

7.
In vertebrate animals, genes of the major histocompatibility complex (MHC) determine the set of pathogens to which an individual's adaptive immune system can respond. MHC genes are extraordinarily polymorphic, often showing elevated nonsynonymous relative to synonymous sequence variation and sharing presumably ancient polymorphisms between lineages. These patterns likely reflect pathogen‐mediated balancing selection, for example, rare‐allele or heterozygote advantage. Such selection is often reinforced by disassortative mating at MHC. We characterized exon 2 of MHC class II, corresponding to the hypervariable peptide‐binding region, in song sparrows (Melospiza melodia). We compared nonsynonymous to synonymous sequence variation in order to identify positively selected sites; assessed evidence for trans‐species polymorphisms indicating ancient balancing selection; and compared MHC similarity of socially mated pairs to expectations under random mating. Six codons showed elevated ratios of nonsynonymous to synonymous variation, consistent with balancing selection, and we characterized several alleles similar to those occurring in at least four other avian families. Despite this evidence for historical balancing selection, mated pairs were significantly more similar at MHC than were randomly generated pairings. Nonrandom mating at MHC thus appears to partially counteract, not reinforce, pathogen‐mediated balancing selection in this system. We suggest that in systems where individual fitness does not increase monotonically with MHC diversity, assortative mating may help to avoid excessive offspring heterozygosity that could otherwise arise from long‐standing balancing selection.  相似文献   

8.
Negative density dependent selection on individuals in prey aggregations (negative DDS, the preferential selection by predators of spatially isolated prey) is assumed to contribute in many cases to the evolution and maintenance of aggregation. Both positive and negative DDS on prey groups have been documented in nature but there is no existing framework to predict when each of these forms of natural selection is most likely. By exploiting the tendency of artificial neural networks to exhibit consumer-like emergent behaviours, I isolate at least two environmental factors impinging on the consumer organism that may determine which form of density dependent natural selection is shown: the distribution of prey group size attacked by the predator and the spatial conformation (dispersed or compacted) of the prey group. Numerous forms of DDS on artificial prey (positive, negative, and non-DDS) are displayed through different combinations of these factors. I discuss in detail how the predictions of the model may be tested by empiricists in order to assess the usefulness of the framework presented. I stress the importance of understanding DDS on prey groups given the recent emergence of these systems as test beds for ideas on biological self-organisation.  相似文献   

9.
10.
11.
Cruz F  Bradley DG  Lynn DJ 《Immunogenetics》2007,59(3):225-232
Atlantic salmon are typically anadromous, spending the majority of their lifetime in oceans and returning to fresh water to breed. This diversity of environments likely results in strong selective forces shaping their genome. In this paper, we present the first genomics approach to detect positive selection operating on the Salmo salar (salmon) lineage, an important aquaculture species. We identify a panel of candidate genes that may have been subject to adaptive evolution in this species. In particular, we identify a robust signature of positive selection operating on the salmon CD3γδ gene, which encodes one of the protein chains essential for formation of the T-cell receptor complex and for T-cell activation. Furthermore, we identified the particular codon sites that have been subject to positive selection in fish and highlight two sites flanking an important N-glycosylation site in this molecule. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

12.
Sexual selection is generally held responsible for the exceptional diversity in secondary sexual traits in animals. Mating system evolution is therefore expected to profoundly affect the covariation between secondary sexual traits and mating success. Whereas there is such evidence at the interspecific level, data within species remain scarce. We here investigate sexual selection acting on the exaggerated male fore femur and the male wing in the common and widespread dung flies Sepsis punctum and S. neocynipsea (Diptera: Sepsidae). Both species exhibit intraspecific differences in mating systems and variation in sexual size dimorphism (SSD) across continents that correlates with the extent of male–male competition. We predicted that populations subject to increased male–male competition will experience stronger directional selection on the sexually dimorphic male foreleg. Our results suggest that fore femur size, width and shape were indeed positively associated with mating success in populations with male‐biased SSD in both species, which was not evident in conspecific populations with female‐biased SSD. However, this was also the case for wing size and shape, a trait often assumed to be primarily under natural selection. After correcting for selection on overall body size by accounting for allometric scaling, we found little evidence for independent selection on any of these size or shape traits in legs or wings, irrespective of the mating system. Sexual dimorphism and (foreleg) trait exaggeration is therefore unlikely to be driven by direct precopulatory sexual selection, but more so by selection on overall size or possibly selection on allometric scaling.  相似文献   

13.
14.
While studies of tri-trophic interactions have uncovered a variety of mechanisms influencing the dietary specialization of insect herbivores, such studies have neglected host-plant selection by generalists. Here, we report an initial investigation on how host-plant quality and a tachinid parasitoid interact to affect the survival and host-plant selection by a polyphagous herbivore. This herbivore, Grammia geneura (Strecker) (Lepidoptera: Arctiidae), is a food-mixing caterpillar that feeds preferentially on forbs. A previous study suggested that G. geneura might eat certain host species for reasons other than benefits of physiological utilization. We hypothesized that host-plant mediated defenses could act against parasitoids, the major mortality agents of late instar G. geneura . Field observations indicated that caterpillars sometimes survived an attack by the parasitoid Exorista mella Walker (Diptera: Tachinidae) in nature. Laboratory experiments showed that the survival of parasitized caterpillars increased on acceptable but nutritionally inferior host-plant species, indicating that anti-parasitoid defense may explain host-plant selection in this dietary generalist. We found no indication that host-plant selection changed according to the parasitism status of individual caterpillars.  相似文献   

15.
The Dutch are the tallest people on earth. Over the last 200 years, they have grown 20 cm in height: a rapid rate of increase that points to environmental causes. This secular trend in height is echoed across all Western populations, but came to an end, or at least levelled off, much earlier than in The Netherlands. One possibility, then, is that natural selection acted congruently with these environmentally induced changes to further promote tall stature among the people of the lowlands. Using data from the LifeLines study, which follows a large sample of the population of the north of The Netherlands (n = 94 516), we examined how height was related to measures of reproductive success (as a proxy for fitness). Across three decades (1935–1967), height was consistently related to reproductive output (number of children born and number of surviving children), favouring taller men and average height women. This was despite a later age at first birth for taller individuals. Furthermore, even in this low-mortality population, taller women experienced higher child survival, which contributed positively to their increased reproductive success. Thus, natural selection in addition to good environmental conditions may help explain why the Dutch are so tall.  相似文献   

16.
The determination of thelacZ mutant frequency in gt10lacZ phage vectors isolated from the transgenic mouse strain 40.6 (MutaMouse), requires the screening of large numbers of phages on -galactosidase activity. Existing methods rely on distinguishing a few white plaques on X-gal containing plates amongst a multide of blue ones which is both time-consuming and expensive. The new screening method described here employs the galactose sensitiveEscherichia coli C lacZ recA galE strain into which a multicopy plasmid has been introduced, which results in over-expression of thegalK andgalT genes. In the presence of phenyl--d-galactopyranoside, a substrate for -galactosidase, this leads to the suppression of lacZ + phage propagation without affecting the ability of lacZ phages to form plaques. With this method it is possible to screen 1.5×106 phages on a single 9-cm Petri dish. Furthermore, the need for blue/white screening has been eliminated.  相似文献   

17.
Linear birth and death processes are used to derive simple expressions for sequential extinction times and gene fixation probabilities in asexual populations.  相似文献   

18.
The functional significance of the retrolateral tibial apophysis (rta) on the male pedipalps in four spider species with different mating positions is investigated with the help of histological serial sections prepared after freeze-fixing copulating pairs with liquid nitrogen. The results of this study, as well as most data in previous works, suggest that the rta is mostly used to fix the male pedipalp to the female epigyne in order to ensure the intromission of the sperm transferring embolus. This is in accordance with the female choice hypothesis on genitalia which predicts that species-specific genital structures should directly or indirectly contact the female during copulation and thus be shaped by sexual selection.  相似文献   

19.
Sexual selection has been identified as a major evolutionary force shaping male life history traits but its impact on female life history evolution is less clear. Here we examine the impact of sexual selection on three key female traits (body size, egg size and clutch size) in Galliform birds. Using comparative independent contrast analyses and directional discrete analyses, based on published data and a new genera-level supertree phylogeny of Galliform birds, we investigated how sexual selection [quantified as sexual size dimorphism (SSD) and social mating system (MS)] affects these three important female traits. We found that female body mass was strongly and positively correlated with egg size but not with clutch size, and that clutch size decreased as egg size increased. We established that SSD was related to MS, and then used SSD as a proxy of the strength of sexual selection. We found both a positive relationship between SSD and female body mass and egg size and that increases in female body mass and egg size tend to occur following increases in SSD in this bird order. This pattern of female body mass increases lagging behind changes in SSD, established using our directional discrete analysis, suggests that female body mass increases as a response to increases in the level of sexual selection and not simply through a strong genetic relationship with male body mass. This suggests that sexual selection is linked to changes in female life history traits in Galliformes and we discuss how this link may shape patterns of life history variation among species.  相似文献   

20.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号