首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pancreas controls vital functions of our body, including the production of digestive enzymes and regulation of blood sugar levels1. Although in the past decade many studies have contributed to a solid foundation for understanding pancreatic organogenesis, important gaps persist in our knowledge of early pancreas formation2. A complete understanding of these early events will provide insight into the development of this organ, but also into incurable diseases that target the pancreas, such as diabetes or pancreatic cancer. Finally, this information will generate a blueprint for developing cell-replacement therapies in the context of diabetes.During embryogenesis, the pancreas originates from distinct embryonic outgrowths of the dorsal and ventral foregut endoderm at embryonic day (E) 9.5 in the mouse embryo3,4. Both outgrowths evaginate into the surrounding mesenchyme as solid epithelial buds, which undergo proliferation, branching and differentiation to generate a fully mature organ2,5,6. Recent evidences have suggested that growth and differentiation of pancreatic cell lineages, including the insulin-producing β-cells, depends on proper tissue-architecture, epithelial remodeling and cell positioning within the branching pancreatic epithelium7,8. However, how branching morphogenesis occurs and is coordinated with proliferation and differentiation in the pancreas is largely unknown. This is in part due to the fact that current knowledge about these developmental processes has relied almost exclusively on analysis of fixed specimens, while morphogenetic events are highly dynamic.Here, we report a method for dissecting and culturing mouse embryonic pancreatic buds ex vivo on glass bottom dishes, which allow direct visualization of the developing pancreas (Figure 1). This culture system is ideally devised for confocal laser scanning microscopy and, in particular, live-cell imaging. Pancreatic explants can be prepared not only from wild-type mouse embryos, but also from genetically engineered mouse strains (e.g. transgenic or knockout), allowing real-time studies of mutant phenotypes. Moreover, this ex vivo culture system is valuable to study the effects of chemical compounds on pancreatic development, enabling to obtain quantitative data about proliferation and growth, elongation, branching, tubulogenesis and differentiation. In conclusion, the development of an ex vivo pancreatic explant culture method combined with high-resolution imaging provides a strong platform for observing morphogenetic and differentiation events as they occur within the developing mouse embryo.  相似文献   

2.
Normal development of the respiratory system is essential for survival and is regulated by multiple genes and signaling pathways. Both Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung and trachea; and, although multiple genes are known to be required in the epithelium, only Fgfs have been well studied in the mesenchyme. In this study, we investigated the roles of Tbx4 and Tbx5 in lung and trachea development using conditional mutant alleles and two different Cre recombinase transgenic lines. Loss of Tbx5 leads to a unilateral loss of lung bud specification and absence of tracheal specification in organ culture. Mutants deficient in Tbx4 and Tbx5 show severely reduced lung branching at mid-gestation. Concordant with this defect, the expression of mesenchymal markers Wnt2 and Fgf10, as well as Fgf10 target genes Bmp4 and Spry2, in the epithelium is downregulated. Lung branching undergoes arrest ex vivo when Tbx4 and Tbx5 are both completely lacking. Lung-specific Tbx4 heterozygous;Tbx5 conditional null mice die soon after birth due to respiratory distress. These pups have small lungs and show severe disruptions in tracheal/bronchial cartilage rings. Sox9, a master regulator of cartilage formation, is expressed in the trachea; but mesenchymal cells fail to condense and consequently do not develop cartilage normally at birth. Tbx4;Tbx5 double heterozygous mutants show decreased lung branching and fewer tracheal cartilage rings, suggesting a genetic interaction. Finally, we show that Tbx4 and Tbx5 interact with Fgf10 during the process of lung growth and branching but not during tracheal/bronchial cartilage development.  相似文献   

3.
The pancreatic and duodenal homeobox gene 1 (Pdx1) has multiple roles in the specification and development of foregut endoderm-derived tissues. We report the characterization of a mouse line in which the gene encoding green fluorescent protein (GFP) has been targeted to the Pdx1 locus, allowing the visualization of Pdx1 expressing cells. Analysis of GFP expression during development showed that the reporter faithfully reproduced the known expression pattern of Pdx1. We demonstrate the utility of this mouse line for the isolation of Pdx1(+) cells by fluorescence-activated cell sorting and for the real-time observation of Pdx1(+) cells in an ex vivo embryonic pancreas culture system. This mouse model should prove useful for the study of pancreas development and regeneration.  相似文献   

4.
In this study mouse lung development was examined using an in vitro model system. The culture system permitted examination of a morphogenic process that eventually led to the formation of presumptive alveoli (terminal sacs). The observations included changes in epithelial cell morphology (transition from a columnar to a spindle shape), and evidence for motile activity on the part of primitive airway epithelial cells. The importance of Type IV collagen to the cellular events associated with branching morphogenesis was investigated by immunolocalization. In addition, we assessed the similarity of normal lung development to in vitro development by comparing cultured lungs with equivalent stages of embryonic and fetal mouse lungs. The results show that cultured embryonic lung explants proceed along a morphogenic pathway that parallels normal lung development; that primitive pulmonary epithelial cells engage in motile activity and transiently acquire an extended cell shape both in vitro and in vivo; that, as suggested by others, the pattern of late branching morphogenesis is not dichotomous, but irregular; and that short wisplike fibers of Type IV collagen are present in developing embryonic and fetal lung mesenchyme. Taken together, the results show that early and late lung branching patterns differ significantly, and suggest that later stages of lung branching involve distinct epithelial cell shape transitions. The immunofluorescence data suggest that fibrous Type IV collagen may be the extracellular matrix scaffold within which early epithelial cells accomplish lung branching morphogenesis.  相似文献   

5.
Organ morphogenesis, including lung morphogenesis, involves a series of cellular behaviors that are difficult to observe and document in vivo due to current limitations in imaging techniques. Therefore, in vitro models are necessary to study these cellular behaviors as well as basic developmental processes relevant to in vivo morphogenesis. Here, we describe a novel in vitro three-dimensional (3D) culture system for assessing mouse lung alveolar morphogenesis using primary fetal mouse lung cells cultured in Matrigel supplemented with fibroblast growth factor 10 and hepatocyte growth factor. In our in vitro 3D culture system, single primary mouse fetal lung cells successfully grew, developed lumen, and formed multivesicular epithelial structures, resulting in a morphology that was highly similar to that of lung alveoli. This culture system is a useful tool for investigating the cellular and molecular mechanisms involved in lung alveolar morphogenesis.  相似文献   

6.
Non-cell-autonomous effects of Ret deletion in early enteric neurogenesis   总被引:1,自引:0,他引:1  
Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system (ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embryos, and genetic studies in mice have identified genes crucial for ENS development, including Ret. Here, we have combined mouse embryo and organotypic gut culture to monitor and experimentally manipulate the progenitors of the ENS. Using this system, we demonstrate that lineally marked intestinal ENS progenitors from E11.5 mouse embryos grafted into the early vagal NCC pathway of E8.5 embryos colonise the entire length of the gastrointestinal tract. By contrast, similar progenitors transplanted into Ret-deficient host embryos are restricted to the proximal foregut. Our findings establish an experimental system that can be used to explore the interactions of NCCs with their cellular environment and reveal a previously unrecognised non-cell-autonomous effect of Ret deletion on ENS development.  相似文献   

7.
Deriving lung progenitors from patient-specific pluripotent cells is a key step in producing differentiated lung epithelium for disease modeling and transplantation. By mimicking the signaling events that occur during mouse lung development, we generated murine lung progenitors in a series of discrete steps. Definitive endoderm derived from mouse embryonic stem cells (ESCs) was converted into foregut endoderm, then into replicating Nkx2.1+ lung endoderm, and finally into multipotent embryonic lung progenitor and airway progenitor cells. We demonstrated that precisely-timed BMP, FGF, and WNT signaling are required for NKX2.1 induction. Mouse ESC-derived Nkx2.1+ progenitor cells formed respiratory epithelium (tracheospheres) when transplanted subcutaneously into mice. We then adapted this strategy to produce disease-specific lung progenitor cells from human Cystic Fibrosis induced pluripotent stem cells (iPSCs), creating a platform for dissecting human lung disease. These disease-specific human lung progenitors formed respiratory epithelium when subcutaneously engrafted into immunodeficient mice.  相似文献   

8.
The development of the anterior foregut of the mammalian embryo involves changes in the behavior of both the epithelial endoderm and the adjacent mesoderm. Morphogenetic processes that occur include the extrusion of midline notochord cells from the epithelial definitive endoderm, the folding of the endoderm into a foregut tube, and the subsequent separation of the foregut tube into trachea and esophagus. Defects in foregut morphogenesis underlie the constellation of human birth defects known as esophageal atresia (EA) and tracheoesophageal fistula (TEF). Here, we review what is known about the cellular events in foregut morphogenesis and the gene mutations associated with EA and TEF in mice and humans. We present new evidence that about 70% of mouse embryos homozygous null for Nog, the gene encoding noggin, a bone morphogenetic protein (Bmp) antagonist, have EA/TEF as well as defects in lung branching. This phenotype appears to correlate with abnormal morphogenesis of the notochord and defects in its separation from the definitive endoderm. The abnormalities in foregut and lung morphogenesis of Nog null mutant can be rescued by reducing the gene dose of Bmp4 by 50%. This suggests that normal foregut morphogenesis requires that the level of Bmp4 activity is carefully controlled by means of antagonists such as noggin. Several mechanisms are suggested for how Bmps normally function, including by regulating the intercellular adhesion and behavior of notochord and foregut endoderm cells. Future research must determine how Noggin/Bmp antagonism fits into the network of other factors known to regulate tracheal and esophagus development, both in mouse or humans.  相似文献   

9.
10.
Retinoic acid (RA) is an embryonic signaling molecule regulating a wide array of target genes, thereby being a master regulator of patterning and differentiation in a variety of organs. Here we show that mouse embryos deficient for the RA-synthesizing enzyme retinaldehyde dehydrogenase 2 (RALDH2), if rescued from early lethality by maternal RA supplementation between E7.5 and E8.5, lack active RA signaling in the foregut region. The resulting mutants completely fail to develop lungs. Development of more posterior foregut derivatives (stomach and duodenum), as well as liver growth, is also severely affected. A primary lung bud is specified in the RA-deficient embryos, which fails to outgrow due to defective FGF10 signaling and lack of activation of FGF-target genes, such as Pea3 and Bmp4 in the epithelium. Specific Hox and Tbx genes may mediate these RA regulatory effects. Development of foregut derivatives can be partly restored in mutants by extending the RA supplementation until at least E10.5, but lung growth and branching remain defective and a hypoplastic lung develops on the right side only. Such conditions poorly restore FGF10 signaling in the lung buds. Explant culture of RALDH2-deficient foreguts show a capacity to undergo lung budding and early branching in the presence of RA or FGF10. Our data implicate RA as a regulator of gene expression in the early embryonic lung and stomach region upstream of Hox, Tbx and FGF10 signaling.  相似文献   

11.
Skeletal (striated) muscle is one of the four basic tissue types, together with the epithelium, connective and nervous tissues. Lungs, on the other hand, develop from the foregut and among various cell types contain smooth, but not skeletal muscle. Therefore, during earlier stages of development, it is unlikely that skeletal muscle and lung depend on each other. However, during the later stages of development, respiratory muscle, primarily the diaphragm and the intercostal muscles, execute so called fetal breathing-like movements (FBMs), that are essential for lung growth and cell differentiation. In fact, the absence of FBMs results in pulmonary hypoplasia, the most common cause of death in the first week of human neonatal life. Most knowledge on this topic arises from in vivo experiments on larger animals and from various in vitro experiments. In the current era of mouse mutagenesis and functional genomics, it was our goal to develop a mouse model for pulmonary hypoplasia. We employed various genetically engineered mice lacking different groups of respiratory muscles or lacking all the skeletal muscle and established the criteria for pulmonary hypoplasia in mice, and therefore established a mouse model for this disease. We followed up this discovery with systematic subtractive microarray analysis approach and revealed novel functions in lung development and disease for several molecules. We believe that our approach combines elements of both in vivo and in vitro approaches and allows us to study the function of a series of molecules in the context of lung development and disease and, simultaneously, in the context of lung's dependence on skeletal muscle-executed FBMs.  相似文献   

12.
Abstract. The purpose of this investigation was to determine whether lamellar inclusion body (LB) formation and surfactant apoprotein (SP-35) production are directly coordinated by temporal and positional information during development. In the present study we report a comparison between embryonic B10.A mouse lung morphogenesis and cytodifferentiation in vivo with that observed during organ culture in serumless medium. Precursor LB were first detected at embryonic day 12 (E12d), and progressively larger numbers and forms were produced during subsequent differentiation of respiratory alveolar duct epithelium. SP-35 was first detected during the canalicular period (E16.5d). Lung cultures (E12 d) showed pseudoglandular and canalicular periods of morphogenesis, and both ciliated epithelial and type II cell differentiation. Nonciliated cells produced increasing numbers of lamellar inclusion bodies throughout the culture period. SP-35 was detected at 9 days in vitro (d.i.v.). These observations indicate (i) precursor LB formation precedes SP-35 expression and is not dependent on apoprotein synthesis; (ii) E12d lung development in vitro using serumless medium proceeds at a rate equivalent to 0.5 days in vivo through 11 d.i.v.; and (iii) morphogenesis and differentiation occur in the absence of exogenous hormones and growth factors. The cell-cell interactions that play a role in morphogenesis and cell differentiation appear to be intrinsic to the developmental program for embryonic lung development and are likely to be mediated by autocrine and/or paracrine factors.  相似文献   

13.
14.
Early embryonic lung branching morphogenesis is regulated by many growth factor-mediated pathways. Bone morphogenetic protein 4 (BMP4) is one of the morphogens that stimulate epithelial branching in mouse embryonic lung explant culture. To further understand the molecular mechanisms of BMP4-regulated lung development, we studied the biological role of Smad-ubiquitin regulatory factor 1 (Smurf1), an ubiquitin ligase specific for BMP receptor-regulated Smads, during mouse lung development. The temporo-spatial expression pattern of Smurf1 in mouse embryonic lung was first determined by quantitative real-time PCR and immunohistochemistry. Overexpression of Smurf1 in airway epithelial cells by intratracheal introduction of recombinant adenoviral vector dramatically inhibited embryonic day (E) 11.5 lung explant growth in vitro. This inhibition of lung epithelial branching was restored by coexpression of Smad1 or by addition of soluble BMP4 ligand into the culture medium. Studies at the cellular level show that overexpression of Smurf1 reduced epithelial cell proliferation and differentiation, as documented by reduced PCNA-positive cell index and by reduced mRNA levels for surfactant protein C and Clara cell protein 10 expression. Further studies found that overexpression of Smurf1 reduced BMP-specific Smad1 and Smad5, but not Smad8, protein levels. Thus overexpression of Smurf1 specifically promotes Smad1 and Smad5 ubiquitination and degradation in embryonic lung epithelium, thereby modulating the effects of BMP4 on embryonic lung growth.  相似文献   

15.
16.
17.
18.
Pathological collapsibility of the upper airways, caused by many different genetic and environmental insults, is known as tracheomalacia in humans. We determined that Tmem16a, a member of an evolutionarily conserved family of predicted transmembrane proteins, is expressed in the developing trachea. We report that all mice homozygous for a null allele of Tmem16a died within one month of birth and exhibited severe tracheomalacia with gaps in the tracheal cartilage rings along the entire length of the trachea. In addition, the development of the trachealis muscle that spans the dorsal aspect of the trachea was abnormal in Tmem16a mutants. Since the chondrogenic mesenchyme does not express Tmem16a at any time, we propose that the cartilage ring defect observed in Tmem16a mutants is secondary to an expansion of the embryonic trachea that might result from improper stratification of the embryonic tracheal epithelium or the abnormal trachealis muscle. Our data identify Tmem16a as a novel regulator of epithelial and smooth muscle cell organization in murine development. This mutant, the first knockout of a vertebrate TMEM16 family member, provides a mouse model of tracheomalacia.  相似文献   

19.
The mammalian foregut gives rise to the dorsally located esophagus and stomach and the ventrally located trachea and lung. Proper patterning and morphogenesis of the common foregut tube and its derived organs is essential for viability of the organism at birth. Here, we show that conditional inactivation of BMP type I receptor genes Bmpr1a and Bmpr1b (Bmpr1a;b) in the ventral endoderm leads to tracheal agenesis and ectopic primary bronchi. Molecular analyses of these mutants reveal a reduction of ventral endoderm marker NKX2-1 and an expansion of dorsal markers SOX2 and P63 into the prospective trachea and primary bronchi. Subsequent genetic experiments show that activation of canonical WNT signaling, previously shown to induce ectopic respiratory fate in otherwise wild-type mice, is incapable of promoting respiratory fate in the absence of Bmpr1a;b. Furthermore, we find that inactivation of Sox2 in Bmpr1a;b mutants does not suppress ectopic lung budding but does rescue trachea formation and NKX2-1 expression. Together, our data suggest that signaling through BMPR1A;B performs at least two roles in early respiratory development: first, it promotes tracheal formation through repression of Sox2; and second, it restricts the site of lung bud initiation.  相似文献   

20.
Conditions affecting cartilage through damage or age-related degeneration pose significant challenges to individual patients and their healthcare systems. The disease burden will rise in the future as life expectancy increases. This has resulted in vigorous efforts to develop novel therapies to meet current and future needs. Due to the limited regenerative capacity of cartilage, in vitro tissue engineering techniques have emerged as the favoured technique by which to develop replacements. Tissue engineering is mainly concerned with developing cartilage replacements in the form of chondrocyte suspensions and three-dimensional scaffolds seeded with chondrocytes. One major limiting factor in the development of clinically useful cartilage constructs is our understanding of the process by which cartilage is formed, chondrogenesis. For example, techniques of culturing chondrocytes in vitro have been used for decades, resulting in chondrocyte-like cells which produce an extracellular matrix of similar composition to native cartilage, but with inferior physical properties. It has now been realised that one aspect of chondrogenesis which had been ignored was the physical context in which cartilage exists in vivo. This has resulted in the development of bioreactor systems which aim to introduce various physical stresses to engineered cartilage in a controlled environment. This has resulted in some improvements in the quality of tissue engineered cartilage. This is but one example of how the knowledge of chondrogenesis has been translated into research practice. This paper aims to review what is currently known about the process of chondrogenesis and discusses how this knowledge can be applied to tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号