首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1-10 m depth), down the fore reef slope to the reef base (10-30 m depth) then across the adjacent continental shelf (30-110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate.  相似文献   

2.
We quantify the relative importance of multi‐scale drivers of reef fish assemblage structure on isolated coral reefs at the intersection of the Indian and Indo‐Pacific biogeographical provinces. Large (>30 cm), functionally‐important and commonly targeted species of fish, were surveyed on the outer reef crest/front at 38 coral reef sites spread across three oceanic coral reef systems (i.e. Christmas Island, Cocos (Keeling) Islands and the Rowley Shoals), in the tropical Indian Ocean (c. 1.126 x 106 km2). The effects of coral cover, exposure, fishing pressure, lagoon size and geographical context, on observed patterns of fish assemblage structure were modelled using Multivariate Regression Trees. Reef fish assemblages were clearly separated in space with geographical location explaining ~53 % of the observed variation. Lagoon size, within each isolated reef system was an equally effective proxy for explaining fish assemblage structure. Among local‐scale variables, ‘distance from port’, a proxy for the influence of fishing, explained 5.2% of total variation and separated the four most isolated reefs from Cocos (Keeling) Island, from reefs with closer boating access. Other factors were not significant. Major divisions in assemblage structure were driven by sister taxa that displayed little geographical overlap between reef systems and low abundances of several species on Christmas Island corresponding to small lagoon habitats. Exclusion of geographical context from the analysis resulted in local processes explaining 47.3% of the variation, highlighting the importance of controlling for spatial correlation to understand the drivers of fish assemblage structure. Our results suggest reef fish assemblage structure on remote coral reef systems in the tropical eastern Indian Ocean reflects a biogeographical legacy of isolation between Indian and Pacific fish faunas and geomorphological variation within the region, more than local fishing pressure or reef condition. Our findings re‐emphasise the importance that historical processes play in structuring contemporary biotic communities.  相似文献   

3.
Aim To identify the most important environmental drivers of benthic macroinvertebrate assemblages in boreal springs at different spatial scales, and to assess how well benthic assemblages correspond to terrestrially derived ecoregions. Location Finland. Methods Benthic invertebrates were sampled from 153 springs across four boreal ecoregions of Finland, and these data were used to analyse patterns in assemblage variation in relation to environmental factors. Species data were classified using hierarchical divisive clustering (twinspan ) and ordinated using non‐metric multidimensional scaling. The prediction success of the species and environmental data into a priori (ecoregions) and a posteriori (twinspan ) groups was compared using discriminant function analysis. Indicator species analysis was used to identify indicator taxa for both a priori and a posteriori assemblage types. Results The main patterns in assemblage clusters were related to large‐scale geographical variation in temperature. A secondary gradient in species data reflected variation in local habitat structure, particularly abundance of minerogenic spring brooks. Water chemistry variables were only weakly related to assemblage variation. Several indicator species representing southern faunistic elements in boreal springs were identified. Discriminant function analysis showed poorer success in classifying sites into ecoregions based on environmental than on species data. Similarly, when classifying springs into the twinspan groups, classification based on species data vastly outperformed that based on environmental data. Main conclusions A latitudinal zonation pattern of spring assemblages driven by regional thermal conditions is documented, closely paralleling corresponding latitudinal patterns in both terrestrial and freshwater assemblages in Fennoscandia. The importance of local‐scale environmental variables increased with decreasing spatial extent. Ecoregions provide an initial stratification scheme for the bioassessment of benthic macroinvertebrates of North European springs. Our results imply that climate warming, landscape disturbance and degradation of spring habitat pose serious threats to spring biodiversity in northern Europe, especially to its already threatened southern faunistic elements.  相似文献   

4.
Fish assemblages of unconsolidated sedimentary habitats on continental shelves are poorly described when compared to those of hard substrata. This lack of data restricts the objective management of these extensive benthic habitats. In the context of protecting representative areas of all community types, one important question is the nature of the transition from reefal to sedimentary fish assemblages. We addressed this question using Baited Remote Underwater Videos (BRUVs) to assess fish assemblages of sedimentary habitats at six distances from rocky reefs (0, 25, 50, 100, 200, and 400 m) at four sites in subtropical eastern Australia. Distance from reef was important in determining fish assemblage structure, and there was no overlap between reef sites and sedimentary sites 400 m from reef. While there was a gradient in assemblage structure at intermediate distances, this was not consistent across sites. All sites, however, supported a mixed ‘halo’ assemblage comprising both reef and sediment species at sampling stations close to reef. BRUVs used in conjunction with high-resolution bathymetric and backscatter spatial data can resolve differences in assemblage structure at small spatial scales (10s to 100s of metres), and has further application in unconsolidated habitats. Unless a ‘reef halo’ assemblage is being examined, a minimum of 200 m but preferably 400 m distance from any hard substrate is recommended when designing broader-scale assessments of fish assemblages of sedimentary habitats.  相似文献   

5.
While herbivory is recognized as a fundamental process structuring coral reef communities, herbivore assemblages and processes are poorly described for reefs in the Indian Ocean region. We quantified herbivorous fish assemblage structure (abundance and diversity) in Laamu Atoll, Republic of Maldives, in four reef habitat types: faro reef flats, faro reef slopes, inner and outer atoll reef slopes (20 sites in total). Herbivorous fish assemblages, representing a total of 30 species, grouped strongly by habitat type, with the highest absolute abundance observed on faro reef flats and lowest abundance on inside atoll rim reef slopes. Removal of Thalassia seagrass blades by ambient herbivore assemblages was used in a bioassay to assess relative herbivory pressure among four habitat types (eight sites). Also, at one site a choice herbivory assay was performed to assess herbivore preference among four benthic plants across three depth zones. Relative herbivory, as indicated by Thalassia assays, was highest on inside atoll rim reef slopes and lowest on outside atoll rim reef slopes. Thalassia consumption did not correspond to overall herbivorous fish abundance, but corresponded more closely with parrotfish abundance. In the choice assays, herbivores showed strong preferences among plant types and consumption of most plant types was higher at mid-depth than in the shallow reef flat or deep reef knoll zones.  相似文献   

6.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

7.
Aim  To examine the roles of local and regional environmental variables and biotic interactions in determining the structure of local stream fish assemblages, and to compare results derived from analyses based on taxonomic and functional groups.
Location  Texas, USA.
Methods  Species abundance data were compiled for 157 stream fish assemblages in several river basins across Texas. Species were condensed into functional groups based on trophic and life-history characteristics. Local and regional environmental variables were either measured at each location or determined from scale maps and public-access data bases. The original taxonomic and functional group data sets were analysed using similarity indices, null models of co-occurrence, and direct and indirect ordination techniques. Results derived from taxonomic and functional group data sets are compared.
Results  Inferences regarding the relative roles of local and larger-scale factors in determining stream fish assemblage structure differ dramatically between analyses of taxonomic and functional groups. Taxonomic analyses suggest a prominent role of regional-scale environmental factors, and local assemblages sorted according to a biogeographic pattern. Functional group analyses suggest almost equal roles of factors representative of local and larger scales, and assemblages were distinguished by a habitat template irrespective of geographic region.
Main conclusions  The structure of local stream fish assemblages is determined ultimately by factors representing multiple scales, with the relative importance of each depending on the biological unit employed (species or functional groups). We suggest that analyses using functional groups can more directly infer ecological responses to environmental variation, and therefore may provide a more fruitful avenue for developing and testing ecological theory of community organization across biogeographic scales.  相似文献   

8.
As the number of marine protected areas (MPAs) increases globally, so does the need to assess if MPAs are meeting their management goals. Integral to this assessment is usually a long-term biological monitoring program, which can be difficult to develop for large and remote areas that have little available fine-scale habitat and biological data. This is the situation for many MPAs within the newly declared Australian Commonwealth Marine Reserve (CMR) network which covers approximately 3.1 million km2 of continental shelf, slope, and abyssal habitat, much of which is remote and difficult to access. A detailed inventory of the species, types of assemblages present and their spatial distribution within individual MPAs is required prior to developing monitoring programs to measure the impact of management strategies. Here we use a spatially-balanced survey design and non-extractive baited video observations to quantitatively document the fish assemblages within the continental shelf area (a multiple use zone, IUCN VI) of the Flinders Marine Reserve, within the Southeast marine region. We identified distinct demersal fish assemblages, quantified assemblage relationships with environmental gradients (primarily depth and habitat type), and described their spatial distribution across a variety of reef and sediment habitats. Baited videos recorded a range of species from multiple trophic levels, including species of commercial and recreational interest. The majority of species, whilst found commonly along the southern or south-eastern coasts of Australia, are endemic to Australia, highlighting the global significance of this region. Species richness was greater on habitats containing some reef and declined with increasing depth. The trophic breath of species in assemblages was also greater in shallow waters. We discuss the utility of our approach for establishing inventories when little prior knowledge is available and how such an approach may inform future monitoring efforts within the CMR network.  相似文献   

9.
Patterns of spatial autocorrelation of biota and distributional similarity (concordance) between assemblages of different organism groups have important implications in both theoretical ecology and biodiversity conservation. Here we report environmental gradients and spatial distribution patterns of taxonomic composition among stream fish, benthic macroinvertebrate, and diatom assemblages along a fragmented stream in south‐western France. We quantified spatial patterns of lotic assemblage structure along this stream, and we tested for concordance in distribution patterns among the three taxonomic groups. Our results showed that both environmental characteristics and stream assemblages were spatially autocorrelated. For stream fish and diatom assemblages, these patterns reflected assemblage changes along the longitudinal stream gradient, whereas environmental variables and benthic macroinvertebrates exhibited a more patchy spatial pattern. Cross‐taxa concordance was significant between stream fish and diatoms, and between stream fish and benthic macroinvertebrates. The assemblage concordance between stream fish and diatoms could be attributed to similar responses along the longitudinal gradient, whereas those between stream fish and benthic macroinvertebrates may result from biotic interactions. Based on potential dispersal capacities of taxa, our results validated the hypotheses that weakly dispersing taxa exhibit greater concordance than highly dispersing ones and that dispersal capacities affect how taxonomic groups respond to their local environment. Both diatoms and highly dispersing stream fish were affected by stream fragmentation (i.e. the number of dams between sites), while the effect of fragmentation was not significant for invertebrates that fly well in their adult stage, thus emphasizing the importance of the way of dispersal. These results suggest that addressing the effects of dispersal capacity on stream assemblage patterns is crucial to identifying mechanisms behind patterns and to better understanding the determinants of stream biodiversity.  相似文献   

10.
Relationships between coral reef substrata and fish   总被引:9,自引:0,他引:9  
 The objective of this work is to identify which substrata characteristics (such as coral morphology, coral diversity, coral species richness, percentage coverage by live coral or by algae) influence the structure and abundance of fish communities. The study was carried out at Reunion Island, Indian Ocean, where six sites were sampled in two zones (reef flat and outer reef slope). Quantitative data were collected by visual census techniques, along a linear transect of 50 m for the substratum, and a belt of 50×2 m for the fish communities. Correspondence analysis (CA) and an optimising cluster analysis, called dynamic clustering method (DCM) were used to describe and compare fish assemblages with the benthic composition. The relationships between benthic and fish communities were examined using the classes revealed by the partitioning of the substratum with DCM. This partitioning allowed us to derive four classes of substratum: the non-disturbed reef flat, the non-disturbed outer reef slope, the perturbed reef habitat and the reef pass. The analysis of the partitioning based on the coral variables suggests that there are significant relationships between benthic and fish assemblages. Accepted: 26 July 1996  相似文献   

11.
Late Middle Ordovician graptoloids are stratigraphically zoned by depth of deposition as well as by age along an 83 km long downslope transect through a roughly four million year long continental-shelf and outer-trench slope sequence in the Mohawk Valley, New York. The distribution of graptoloid assemblages parallels the distribution of sediment types and benthic macroinvertebratc assemblages in showing the general, convergence-related marine transgression, secondary transgressive and regressive pulses, and topographic irregularities related to syndepositional block faulting. The relationship of ordination scores for graptoloid assemblages (which arc based on relative abundances of genera) to the samples' positions on downslope transects along bentonite beds, and to depth-related ordination scores for benthic macroin-vertebrate assemblages in the same samples throughout the sequence, quantitatively demonstrates zonation by depth of deposition. Rather like modern pelagic colonial tunicates, graptoloids were evidently zoned by depth in the water column, with Orthograptus spp. predominating in offshore waters above the oxygen minimum zone, Climacograptus spp. near the top of the minimum zone at 300 to 500 m depths, and Corynoides spp. well within the minimum zone. Destruction of sinking rhabdosomes by decomposers evidently accentuated zonation by depth of deposition, and may have contributed to the strong, broad oxygen minimum zone thought to have been characteristic of graptolitic shale basins. Stratigraphic sections' approximate relative sea level curves, calibrated in terms of graptoloid assemblage ordination score, give ecostratigraphic correlations of 2–3 × 105 year average accuracy when statistically cross-correlated between sections, and when cross-correlated with similar curves based on benthic macroinvertebratc assemblage ordination score. □Graptolithina, age zonation, depth zonation, paleoeco-logy, Middle Ordovician, ecostratigraphy, coenocorrelation.  相似文献   

12.
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m–2), and productive (up to 110 mg O2 m–2 h–1) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92–995 mg chl a m–2) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.Communicated by Environmental Editor, B.C. Hatcher  相似文献   

13.
1. Both local and regional processes simultaneously control species assemblages depending on spatial habitat configuration. In dendritic networks like streams, the unique spatial arrangement of habitats produces various combinations of local habitat size and isolation. Stream invertebrate assemblages could therefore be controlled by different combinations of local and regional processes, depending on their location in the network. 2. Using quantile regression, we investigated how local habitat size, local environmental conditions and spatial isolation influenced variation in assemblage composition. Adult Trichoptera and benthic macroinvertebrate assemblages were represented by non‐metric multidimensional scaling (NMDS) ordination scores, as were local environmental conditions, in four headwater stream networks in New Zealand. 3. With increasing local habitat size, there was a decrease in variation in assemblage composition (NMDS scores) of both adult Trichoptera and benthic macroinvertebrates. This relationship between habitat size and assemblage variation was related to local habitat conditions at the upper limit of assemblage variability and spatial isolation at the lower limit of assemblage variability, for both adult Trichoptera and benthic assemblages, indicating joint local and regional controls on stream invertebrate assemblages. 4. The relationships between local assemblages and their neighbours, based on community similarity scores, differed between benthic macroinvertebrates and adult Trichoptera. For benthic assemblages, the larger the stream, the more similar assemblages were to neighbouring assemblages, whereas there was no consistent relationship between assemblage similarity and stream size for adult Trichoptera. This difference in structuring could be attributed to contrasting spatial influences linked to the different dispersal modes of adults and larvae. However, because adult and benthic assemblages are not independent, the influence of life stage on spatial distribution is difficult to determine (i.e. it is essentially a ‘chicken and egg’ argument). 5. Overall, our approach using quantile regression to evaluate limit responses, rather than regressions on means, has highlighted the joint importance of local habitat and spatial processes in structuring stream invertebrate assemblages. Furthermore, we have provided evidence for the importance of the spatial network arrangement and interactions between life stages and dispersal processes, in structuring stream assemblages.  相似文献   

14.
Macroecology of a host-parasite relationship   总被引:3,自引:0,他引:3  
The larvae of freshwater mussels are obligate ectoparasites on fishes while adults are sedentary and benthic. Dispersal of mussels is dependent on the movement of fish hosts, a regional process, but growth and reproduction should be governed by local processes. Thus, mussel assemblage attributes should be predictable from the regional distribution and abundance of fishes. At a broad spatial scale in the Red River drainage, USA, mussel species richness and fish species richness were positively associated; maximum mussel richness was limited by fish richness, but was variable beneath that constraint. Measured environmental variables and the associated local fish assemblages each significantly accounted for the regional variation in mussel assemblages. Furthermore, mussel assemblages showed strong spatial autocorrelation. Variation partitioning revealed that pure fish effects accounted for 15.4% of the variation in mussel assemblages; pure spatial and environmental effects accounted for 16.1% and 7.8%, respectively. Shared variation among fish, space and environmental variables totaled 40%. Of this shared variation, 36.8% was associated with the fish matrix. Thus, the variation in mussel assemblages that was associated with the distribution and abundance of fishes was substantial (> 50%), indicating that fish community structure is an important determinant of mussel community structure. Although animals commonly disperse plants and, thus, influence the structure of plant communities, our results show a strong macroecological association between two disparate animal groups with one strongly affecting the assemblage structure of the other.  相似文献   

15.
The Eocene fishes of Monte Bolca: the earliest coral reef fish assemblage   总被引:6,自引:0,他引:6  
The fish assemblage from the Eocene deposits of Monte Bolca, Northern Italy, are compared with those of Recent coral reefs. A family-level taxonomic definition of a Recent coral reef fish assemblage is formulated to permit direct comparisons. On this basis, the Monte Bolca fishes represent the earliest clearly defined coral reef fish assemblage. Quantitative analyses of the relative abundance of fish families revealed significant differences between the two assemblages. The Bolca assemblage has Mesozoic links (Pycnodontiformes) and non-perciform taxa are relatively abundant, particularly the Beryciformes (Holocentridae). However, Bolca represents the earliest record of a perciform-dominated benthic fish assemblage (68.4% of all non-clupeid taxa). Within the Perciformes, the abundance of the major reef fish lineages (higher squamipinnes and Labroidei) differs markedly between the two assemblages. The numerical dominance of labroid fishes on coral reefs appears to have been a relatively recent occurrence.  相似文献   

16.

Aim

Biodiversity loss is impacting essential ecosystem functions and services across the globe. Recently, our interest in the benefits of biodiversity for ecosystem function has shifted focus from measurements of species richness to functional diversity and composition. However, the additional importance of other community characteristics, such as species evenness and co-occurrence, for diversity-driven ecosystem function is less known. We used herbivorous coral reef fish as a model system to investigate how co-occurrence of different functional groups, rather than purely functional diversity, within an assemblage might affect the coral reef benthic state.

Location

Western Atlantic.

Time period

2007–2017.

Major taxa studied

Herbivorous reef fish.

Methods

We analysed benthic and fish assemblage data from 601 sites across 12 countries in the western Atlantic. Using diversity–interaction models, we investigated how the composition and relative abundances of reef fish functional groups were correlated with benthic cover and estimates of coral calcification rates. We used statistical interactions to explore the importance of co-occurrence of herbivorous fish functional groups for the coral reef benthic state.

Results

We found that co-occurrence of herbivorous fish functional groups, in addition to functional diversity, was correlated with reduced algal cover and increased coral accretion. Moreover, pairwise statistical interactions between functional groups were significantly correlated with an improvement in the coral reef benthic state.

Main conclusions

Our results support the idea that functional group co-occurrence, in addition to functional diversity, within herbivorous fish offers additional benefits to the coral reef benthic state. We identify farming damselfish and excavating parrotfish as potential key determinants of the coral reef benthic state and highlight that co-occurrence of cropping and scraping herbivores might promote coral accretion. Our findings support the argument that protecting herbivore abundance without regard to the species and functional groups present is not enough to preserve coral reef health and that fine-scale community composition must be considered.  相似文献   

17.
We examined coral reef communities at 11 sites within Mafia Island Marine Park using a point count method for substrate and visually censused belt transects for fish populations. Multivariate ordinations showed that the benthic habitat differed among reefs. The patterns were mainly attributed to variations in depth, hydrodynamics and benthic composition. In total, the substratum was dominated by dead coral (49%) and algae (25%), with a live coral cover of only 14%. Three hundred and ninety-four fish species belonging to 56 families were recorded. According to MDS-ordinations and RELATE procedures, fish assemblage composition varied among sites in concordance with the habitats provided. Sites with highest proportion of dead coral exhibited highest degree of dispersion in the multivariate ordinations of fish assemblages. Stepwise multiple regression was used to determine the proportion of variance among sites which could be explained by depth, exposure, rugosity, substrate diversity, branching substrate, live coral cover, dead coral cover and different types of algae. The results showed that habitat variables explained up to 92% of the variation in species numbers and in total, and taxon-specific, abundance. Live coral cover was the foremost predictor of both numerical and species abundance, as well as of corallivores, invertivores, planktivores and of the families Pomacentridae, Chaetodontidae and Pomacanthidae. Our results suggest that habitat characteristics play a dominant role in determining fish assemblage composition on coral reefs.  相似文献   

18.
1.  We examined the effects of physical and chemical habitat variables and ecoregions on species occurrence and fish assemblage structure in streams of the Paraíba do Sul basin, in southeast Brazil.
2.  Fish and environmental data were collected from 42 sites on 26 first to fourth order streams (1 : 50 000 map scale) in three ecoregions. The sites occurred in one valley and two plateau ecoregions at altitudes of 40–1080 m and distances of 0.1–188 km from the main channel of the Rio Paraíba do Sul. Physical habitat (substratum, riparian cover, habitat types) and water quality (dissolved oxygen, pH, temperature and conductivity) variables were measured at each sampling site.
3.  A total of 2684 individuals in 16 families and 59 species were recorded.
4.  Ecoregion was a better predictor of the fish assemblage than the other environmental variables, according to the differences between the mean within-class and mean between-class similarities in assemblage data.
5.  Differing landscape characteristics were associated with differing local variables and thereby with differing fish assemblage structures. Riffles, shrub, grass, dissolved oxygen, conductivity and temperature were closely related to fish assemblage structure.
6.  Fish assemblages in sites far from the main river and at higher altitudes also differed from those near the Paraíba do Sul main channel, presumably as a result of differences in connectivity, covarying environmental factors and anthropogenic influence.
7.  These results reinforce the importance of understanding how stream communities are influenced by processes and patterns operating at local and regional scales, which will aid water resource managers to target those factors in their management and rehabilitation efforts.  相似文献   

19.
Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30–84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50–60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper.  相似文献   

20.
 The 9 km2 uplifted lagoon of Taiaro Atoll (15°45′S, 144°38′W) is hypersaline due to its isolation from the ocean, yet it contains a high diversity of fish. The question unifying our expedition was to discover whether these assemblages could be self-sustaining despite very limited contact with the ocean. Although we were constrained by time, collections of fish larvae showed that some species can complete their life-cycle within the lagoon, while others differed genetically between the lagoon and the ocean, consistent with restricted gene flow. The lagoon contained few oceanic species of zooplankton, confirming its general isolation, but nevertheless some fish species may depend upon infrequent colonisation from the ocean (when large waves drive water over the normally dry reef crest). Isotopic signatures in fish otoliths suggest the basis for a more definitive and inclusive test of the sources of the lagoonal assemblage. Accepted: 28 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号