首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄河三角洲人工恢复芦苇湿地生态系统健康评价   总被引:7,自引:4,他引:3  
宋创业  胡慧霞  黄欢  任红旭  黄翀 《生态学报》2016,36(9):2705-2714
研究目的是对黄河三角洲人工恢复芦苇湿地生态系统的健康状况进行评价。按照层次分析法的思想,从环境、植物群落和植物生理生化特征等3个方面构建评价指标体系。在专家意见的基础上,确定各个指标的权重,计算生态系统健康指数。通过与自然芦苇湿地对比,对人工恢复芦苇湿地的健康状况进行评价。结果显示:人工恢复芦苇湿地的土壤有机质、全氮和全盐含量、群落盖度、密度和地上生物量等指标显著低于自然芦苇湿地,地表水电导率、叶片的APX、DHAR、MDHAR等酶的活性显著高于自然芦苇湿地,其生态系统健康指数低于自然芦苇湿地。这说明在短时间内,人工恢复芦苇湿地的健康状况和自然芦苇湿地还存在一定差距。恢复时间对生态系统健康评价有重要影响,长时间尺度上监测数据的积累是全面、深入了解生态系统、评价生态系统健康状况所必需的。  相似文献   

2.
Since wetlands are ecosystems that have an ample supply of water, they play an important role in the energy budgets of their respective landscapes due to their capacity to shift energy fluxes in favor of latent heat. Rates of evapotranspiration in wetlands are commonly as high as 6–15 mm day−1, testifying to the large amount of energy that is dissipated through this process. Emergent or semi-emergent wetland macrophytes substantially influence the solar energy distribution due to their high capacity for transpiration. Wetland ecosystems in eutrophic habitats show a high primary production of biomass because of the highly efficient use of solar energy in photosynthesis. In wetlands associated with the slow decomposition of dead organic matter, such as oligotrophic marshes or fens and bogs, the accumulation of biomass is also high, in spite of the rather low primary production of biomass. Most of the energy exchange in water-saturated wetlands is, however, linked with heat balance, whereby the largest proportion of the incoming energy is dissipated during the process of evapotranspiration. An example is shown of energy fluxes during the course of a day in the wetland ecosystem of Mokré Louky (Wet Meadows) near Třeboň. The negative consequences of the loss of wetlands for the local and regional climate are discussed.  相似文献   

3.
大型人工湿地生态可持续性评价   总被引:3,自引:0,他引:3  
张依然  王仁卿  张建  刘建 《生态学报》2012,32(15):4803-4810
大型人工湿地现已广泛应用于湖滨带、河滨带水质净化及湿地生态修复,这些人工湿地的生态可持续性评价对于其科学管理调控及长期可持续运行具有重要意义。运用综合指标评价及层次分析法,根据人工湿地生态系统的特点,提出并建立了适合评价人工湿地可持续性运行的指标体系,建立的评价指标包括生态特征与功能、水质净化功能及经济社会功能三项一级指标,及对应的14个二级指标。运用建立的评价指标体系对南四湖湖滨带新薛河大型人工湿地示范工程的生态可持续性运行了评价,评价结果显示:植物多样性、氨氮去除能力、生物入侵抵抗力、野生动物栖息地、COD去除能力是影响大型人工湿地运行效果的主要制约因素;新薛河人工湿地生态可持续性综合指数为0.6862,处于"良"级,其中生态特征功能可持续性指数最高,为0.7732;水质净化功能和社会经济功能指数分别为0.6190,0.6492。由结果可知,南四湖新薛河大型人工湿地具有重要的生态修复功能,水质净化功能方面应加强植物定期收割及植被管理,同时经济社会功能还有待加强,植物经济效益及旅游娱乐效益还有待深入开发。建立的人工湿地可持续性运行的评价指标体系具有较强的针对性,可用于其他大型人工湿地的生态可持续性评价。  相似文献   

4.
乌梁素海野生芦苇群落生物量及影响因子分析   总被引:39,自引:0,他引:39       下载免费PDF全文
 对内蒙古乌梁素海湿地野生芦苇(Phragmites australis)生物量的调查基础上,探讨了富营养化湖泊湿地水体的物理化学性质对芦苇生物量的影响。结果表明:1)由于环境因子的影响,芦苇群落生物量变化较大,介于1.73~3.00 kg·m-2之间;地下和地上生物量之比介于1.14~2.19之间;2)芦苇群落生物量受多种因素的影响,其中水深是最主要的限制因子,水上生物量和地上生物量随着水深的增加而增加,而地下与地上生物量的比值则随水深的增加而减少,这主要是由于水深改变了芦苇群落的结构(群落密度)和个体形态(株高和株茎);3)芦苇群落生物量随着水体N浓度增加而增加。芦苇各器官(叶、茎、根状茎和根)的N∶P为7.59~12.21,小于14,这也说明该水体中的N负荷是影响芦苇生长的主要限制因子;4)土壤有机质分解对芦苇生长没有产生毒害作用。  相似文献   

5.
人工湿地的氮去除机理   总被引:86,自引:1,他引:86  
卢少勇  金相灿  余刚 《生态学报》2006,26(8):2670-2677
湖泊等水环境的富营养化给人类带来诸多损害,如环境、生态和经济等方面的损害。富营养化的原因和控制途径引起了包括中国在内的很多国家的关注。我国针对水环境的富营养化问题开展了大量的工作。氮是引发水环境富营养化的主要营养物之一。外源氮负荷(分点源和非点源两部分)是水环境污染负荷的重要组成部分。传统污水处理技术应用于收集系统欠缺的非点源污染的治理时成本过高。人工湿地是有效削减水环境中外源氮负荷的重要技术手段,在处理非点源污染源带来的氮负荷时更是如此。人工湿地具有氮去除效果好、耐冲击负荷能力强、投资低和生态环境友好等优点。因此人工湿地非常适合于水环境富营养化的防治。阐明人工湿地中氮的去除机理对水环境的富营养化等具有重要的意义。防渗人工湿地的氮去除机理主要包括挥发、氨化、硝化/反硝化、植物摄取和基质吸附。未防渗的人工湿地中,周围水体与人工湿地的氮交换影响着人工湿地中氮的去除。一般情况下,人工湿地中硝化/反硝化是最主要的氮去除机理。pH值小于7.5时,氨挥发可忽略。pH值在9.3以上时,氨挥发很显著。处理生活污水的人工湿地中氮的去除主要是依靠微生物的硝化/反硝化作用。在进水负荷低、气候适宜、植物物种适宜和收割频率与时机适宜的条件下,植物收割可能成为主要的去氮途径。人工合理导向的湿地的氮去除效果通常优于天然湿地。合理的设计(填料的搭配、植物物种的配置以及布水和集水的优化)对人工湿地系统中氮去除的改善有重要影响。合理的运行,如有效的水位控制,正确的植物培育、合理的植物收割等,能有效地改善湿地中的氮去除。  相似文献   

6.
浙江秀山岛湿地生态系统初探   总被引:3,自引:3,他引:0  
秀山岛位于东海舟山渔场海域,岛上有大片的湿地资源分布,其滨海部分与舟山渔场的生物资源特别是渔业生物资源密切联系,具有罕见的海岛特色。海岛的特殊地理位置为秀山岛湿地赋予了独特的生态特征。秀山岛湿地内动植物资源丰富,生物多样性高,共有植物种类300余种,栖息的鸟类共有26个科108种,包括国家一级保护动物东方自鹳(Ixobrychus minutus)。还有国家二级保护动物獐(Hydropotes inermis)等珍贵动物自然栖息。秀山岛湿地包括潮下带湿地(浅海湾)、潮间带湿地(泥滩、芦苇丛)、潮上带湿地(咸水沼泽、半咸水沼泽)、异化湿地(盐田、养殖池、稻田)等几个紧密联系的部分。具有多方面的生态功能。由于对湿地的生态功能重视不够,湿地生态系统破碎化严重。目前在秀山岛湿地已经建立了湿地自然保护区,湿地生态系统得到了较好的发展。  相似文献   

7.
李新虎  赵成义 《生态学报》2013,33(22):7204-7210
针对传统湿地芦苇调查统计方法中的问题,建立了基于自由搜索的投影寻踪模型,将芦苇的生理特征指标和环境因子指标作为投影指标构建了投影指标函数,通过自由搜索算法优化得到最佳投影方向,由最佳投影指标函数来反映各类芦苇的特征,避免了人为赋予权重的干扰,客观性强,数学概念清晰,并在博斯腾湖芦苇调查统计中进行了应用,结果表明:博斯腾湖芦苇的种类及群落特征没有发生显著的变化,在8个环境因子中水质及水量是影响芦苇产量的主要环境因子,土壤有机质对芦苇产量的影响最小;通过实际应用表明模型应用效果较好,为湿地芦苇资源调查及湿地芦苇的生态保护提供了新的思路。  相似文献   

8.
雄安新区白洋淀生态属性辨析及生态修复保护研究   总被引:6,自引:0,他引:6  
刘俊国  赵丹丹  叶斌 《生态学报》2019,39(9):3019-3025
湿地是自然界生物多样性最丰富的生态系统之一,与社会发展和人类福祉息息相关。近年来,由于全球气候变化和人类活动的过度干扰,湿地正面临着面积萎缩、功能减弱、多样性降低等诸多问题,湿地退化已经成为制约区域可持续性发展的重大阻碍。伴随着生态文明建设逐渐成为中国特色社会主义建设的重要支柱,湿地生态修复工作得到前所未有的制度保障。深入剖析湿地属性,结合政策保障,有针对性的提出湿地保护与修复的治理措施,对区域的生态环境建设和可持续性发展具有重要意义。选择国家级新区-雄安新区的水命脉-白洋淀湿地为研究对象,在深入剖析其生态属性和已存在的生态问题的基础上,结合生态修复的原则、方法和步骤,提出生态修复与保护的可行性策略。研究结果表明,白洋淀本质是典型的湖泊湿地,同时兼具沼泽湿地特征,由于人类活动的剧烈干扰,白洋淀有向沼泽湿地逆向演替的变化趋势。湿地内存在面积萎缩、水资源量短缺、水环境污染问题突出及生物多样性减少等生态问题。本研究建议:为顺利建设雄安新区,首先,白洋淀湿地在算清"水账"、"污账"和"生态账"的前提下,进一步加强流域水资源调配,科学确定白洋淀湿地最佳水位,恢复淀区水量;其次,通过使用清洁生产技术和限制高排污企业建设等措施,加强污染防治,恢复湿地水质;最后,依据生态承载力理论,划分白洋淀流域的生态功能红线、环境质量红线和资源利用红线等国家生态保护红线体系,为尽快恢复湿地结构与功能提供制度保障。  相似文献   

9.
Macrophyte biomass production and species richness were monitored from 1988 through 1991 in four freshwater wetlands constructed on the floodpain of the Des Plaines River, Lake County, Illinois, USA. The wetlands were constructed in 1988 and pumping of river water began in 1989 under two differentd hydrologic regimes: two wetlands received high water inflow (equivalent to 40 cm wk−1 of water depth) and two received low flow (11 cm wk−1). Biomass production showed no relationship to the hydrologic inflows after two years of experimentation, with both the highest and lowest production occuring in low flow wetlands. Rates of primary production increased between 1990 and 1991 under low flow conditions and decreased under high flow conditions, primarily as a result of the initial composition of the plant community. The change from dry conditions in 1988 to flooded conditions in 1989 altered the species composition in each wetland to include almost 100% wetland-adapted species. Similarity in species composition among the four wetlands diverged from 1988 to 1989 as the plant community adjusted to flooded conditions and then converged in both 1990 and 1991 as the wetlands developed.  相似文献   

10.
There is a conflict between nature conservation and thatching industry regarding the management of reedbeds. On one hand, reedbeds are of an economical importance by providing thatching material, on the other hand, they harbour several endangered species. Reedbeds are typically managed by winter cutting, but its impacts on biodiversity are poorly understood. Our aim was to study the effects of winter cutting on the habitat diversity and structural heterogeneity of wetlands in a lowland alkali landscape (East-Hungary). We tested the following hypotheses: (i) Both diversity of plant species and habitat diversity are lower in winter cut wetlands compared to unmanaged stands. (ii) The distribution of biomass (green biomass, litter and standing dead biomass) is more homogeneous in winter cut wetlands compared to unmanaged ones. We found that winter cutting decreased habitat diversity and structural heterogeneity at multiple scales. Number of plant species and all measures of habitat diversity (number of patches, vegetation types and the length of vegetation margins) had lower scores in cut wetlands than in unmanaged ones. We found that unmanaged wetlands harboured high amount of accumulated biomass and they also maintained high habitat diversity likely due to the heterogeneous distribution of the biomass. In unmanaged wetlands, biomass accumulation did not decrease habitat diversity and also contributed to a higher structural heterogeneity. In cut wetlands, expansion of reed was an important driver of the decrease in habitat diversity and structural heterogeneity. Reed expansion likely overrode fine-scale edaphic conditions (hydrology and salinity) in shaping vegetation patterns; thus we suggest to avoid intensive winter cutting.  相似文献   

11.
Common reed (Phragmites australis) and reed canarygrass (Phalaris arundinacea) are two most commonly used plant species in constructed wetlands for wastewater treatment in the Czech Republic. Growth characteristics of both plants (biomass, stem count, and length) have been measured in 13 horizontal sub-surface flow constructed wetlands since 1992. The results revealed that while Phalaris usually reaches its maximum biomass as early as during the second growing season, Phragmites usually reaches its maximum only after three to four growing seasons. The maximum biomass of both species varies widely among systems and the highest measured values (5070 g m−2 for Phragmites and 1900 g m−2 for Phalaris) are similar to those found in eutrophic natural stands. The shoot count of Phragmites decreases after the second growing season while length and weight of individual shoots increases over time due to self-thinning process. Number of Phalaris shoots is the highest during the second season and then the shoot count remains about the same. Also the shoot length remains steady over years of constructed wetland operation.  相似文献   

12.
Biodiversity of constructed wetlands for wastewater treatment   总被引:3,自引:0,他引:3  
Constructed wetlands are often built for wastewater treatment to mitigate the adverse effects of organic pollution in streams and rivers caused by inputs of municipal wastewater. However, there has been little analysis of biodiversity and related factors influencing the ecosystem functioning of constructed wetlands. The purpose of this study was to evaluate the biodiversity of two free-water-surface integrated constructed wetlands in subtropical Taiwan by analyzing the water quality, habitat characteristics, and biotic communities of algae, macrophytes, birds, fish, and aquatic macroinvertebrates in the treatment cells. Our results indicated that the two integrated constructed wetlands (Hsin-Hai II and Daniaopi Constructed Wetlands) achieved good performance in reducing the concentrations of total nitrogen (TN) and total phosphorus (TP), and loadings of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) from municipal sewage. In total, 58 bird species, 7 fish species, and 34 aquatic macroinvertebrate taxa were recorded in the two wetlands. The results of stepwise multiple regressions showed that the richness, abundance, and diversity of birds increased with wetland area. Fish richness and abundance respectively increased with wetland area and dissolved oxygen, while the diversity decreased with increases in TP concentrations. The richness and density of aquatic macroinvertebrates increased with the cover of aquatic macrophytes, while the diversity increased with wetland area. Ordination analyses indicated that variations in the community structures of birds, fishes, and aquatic macroinvertebrates were respectively best explained by water temperature, wetland area, and species richness of fish. Our results suggest that wetland area, cover of aquatic macrophytes, and water quality were the most important factors governing the diversity in the constructed wetlands, and that the factors influencing community structures varied among different taxonomic groups. In addition to improving water quality, this study implied that the biodiversity of constructed wetlands for wastewater treatment can be enhanced through proper design and management.  相似文献   

13.
Aquaculture is currently one of the fastest growing food-producing sectors, accounting for around 50% of the world''s food fish. Limited resources, together with climatic change, have stimulated the search for solutions to support and sustain the production of fish as a nutritious food. The integration of a constructed wetland (CW) into a recirculating hatchery (RHS) was evaluated with respect to its economic feasibility and environmental impact. The outcome of eight production cycles showed the potential of CW integration for expanded production without increased operation costs or environmental load. Concretely, the use of constructed wetland allows the rearing about 40% more fish biomass, resulting in higher production and profitability. The low requirements for space, fresh water, and energy enable the establishment of such systems almost anywhere. Constructed wetlands could enhance the productivity of existing small scale facilities, as well as larger systems, to address economic and environmental issues in aquaculture. Such systems have potential to be sustainable in the context of possible future climate change and resource limitations.  相似文献   

14.
几种湿地植物净化生活污水COD、总氮效果比较   总被引:36,自引:2,他引:36  
以无植被、基质为河砂的潜流型人工湿地为对照,研究了石菖蒲、灯心草和蝴蝶花3种类型植被、基质均为河砂的潜流型人工湿地净化生活污水COD、总氮的效果.结果表明,在污水COD浓度小于200mg·L^-1、总氮浓度小于30mg·L^-1的低浓度范围里,无植被的人工湿地和有植被的人工湿地对污水中COD、总氮均有很好的去除效果,两者差异不大,其COD去除率均达90%以上,总氮的去除率达80%以上.随着污水中COD和总氮浓度的增加,无植被人工湿地和有植被人工湿地去除COD和总氮的效果均有不同程度下降,两者差异明显,有植被的人工湿地能维持较高的COD、总氮的去除效果,无植被的人工湿地COD和总氮去除效果下降很快,植被在人工湿地系统去除污水COD和总氮过程中起着重要的作用.在整个试验阶段,石菖蒲植被人工湿地COD和总氮平均净化效率分别为80.46%和77.77%、灯心草人工湿地分别为75.53%和71.17%、蝴蝶花人工湿地分别为70.50%和66.38%,无植被人工湿地分别为61.39%和55.81%.同无植被人工湿地COD和总氮净化效果相比,石菖蒲植被人工湿地净化效果最好;其次为灯心草植被人工湿地,再次为蝴蝶花植被人工湿地.不同类型植被的人工湿地净化污水中COD和总氮的效果与其生物量关系密切,这与植被系统吸收同化有机物质和总氮数量、根际微生物分解有机物质和硝化-反硝化作用有关。  相似文献   

15.
Changhao Jin 《Hydrobiologia》2008,598(1):257-270
Freshwater wetlands worldwide are under threat from secondary salinisation and climate change. Given that many freshwater wetlands naturally have highly variable hydrology, it is important to understand the combined effects of salinity and water regime on wetland biodiversity. Here a mathematical model has been developed to explore the biodiversity dynamics of freshwater wetland ecosystems affected by secondary salinisation and seasonal hydrology variation. The model shows that seasonal hydrological change can drive the wetland ecosystem into a stable oscillatory state of biodiversity, with the same period as the wetting and drying cycle. The initial condition of a wetland mediates the ecological response of the wetland ecosystem to salinity and seasonal variability. There are two manifestations of stability that occur in relation to wetland biodiversity: monostability and bistability. In model simulations, some wetland ecosystems may respond to the effects of seasonal change quickly, while others may do so more slowly. In ‘slow response’ wetlands, seasonal variability has a weak impact on the ecosystem properties of stability, resilience, sensitivity and the species richness–mean salinity relationship. In contrast, ‘fast response’ wetlands are seasonally controlled heavily. Seasonal variability can play a critical role in determining ecosystem properties. Changes in the strength of seasonality can induce the transition between monostability and bistability. Seasonal variability may also reduce wetland resilience, exacerbating the risk of secondary salinisation. On the other hand, seasonal variability may provide opportunities for the restoration of salinised wetlands by increasing their sensitivity to management actions and facilitating recovery processes. Model simulations show that the response of the stable biodiversity oscillation to changing mean salinity is dependent on seasonality strength (primarily for fast response wetlands) and other wetland conditions. Generally, there are two types of wetland responses to changes in mean salinity: type 1 wetlands exhibit a graded response of species richness (a surrogate for biodiversity), whereas a hysteretic response occurs in type 2 wetlands. Species diversity displays critical behaviour: regime shifts in diversity occur at the thresholds of mean salinity, strength of seasonality or initial species diversity. The predictions are consistent with previously-published field observations in salinised freshwater wetlands. Handling editor: D. Hamilton  相似文献   

16.
陈红  欧小杨  吕英烁  李晓溪  郑曦 《生态学报》2024,44(12):5128-5139
气候变化通过改变湿地水文过程等影响湿地的空间分布,城市化进程加剧了湿地破碎化程度并导致湿地生境退化,构建连续的湿地生态保护网络体系有利于应对气候变化和城市发展带来的负面影响、提高生物多样性保护水平。北京市现有湿地空间分布呈现斑块面积小、破碎化程度高等特点,为优化湿地保护区格局并应对气候变化和城市发展对北京市湿地生物多样性的影响,基于系统保护规划方法,以Marxan作为空间优化模型,结合PLUS模型和MaxEnt模型,模拟预测北京市湿地优先保护格局、识别湿地保护空缺并构建湿地分级保护区格局。研究表明:2020年北京市湿地存在80.15km2的保护空缺、2035年和2050年优化后湿地保护区占比分别为87.54%和85.95%,在满足本研究预设的生物多样性保护目标的前提下符合北京市湿地保护规划对湿地保护率的要求。为最优化资源分配,综合时空变化对湿地保护区空间分布的影响,构建了湿地分级保护区格局,将湿地保护区分为湿地永久保护区、湿地一级临时保护区和湿地二级临时保护区三个等级,以期为北京市分期建设湿地保护区、优化湿地生态保护网络体系和保护湿地生物多样性提供依据。  相似文献   

17.
Many wetlands have been constructed in West Virginia as mitigation for a variety of human disturbances, but no comprehensive evaluation on their success has been conducted. Macroinvertebrates are extremely valuable components of functioning wetland ecosystems. As such, benthic and water column invertebrate communities were chosen as surrogates for wetland function in the evaluation of 11 mitigation and 4 reference wetlands in West Virginia. Mitigation wetlands ranged in age from 4 to 21 years old. Overall familial richness, diversity, density and biomass were similar between mitigation and reference wetlands (p > 0.05). Within open water habitats, total benthic invertebrate density was higher in reference wetlands, but mass of common taxa from water column samples was higher in mitigation wetlands (p < 0.05) Planorbidae density from benthic samples in emergent habitats was higher in reference than mitigated wetlands. Benthic Oligochaeta density was higher across open water habitats in mitigation wetlands. All other benthic taxa were similar between wetland types. Among the most common water column orders, Isopoda density was higher in reference wetlands, but Physidae density was higher in mitigation wetlands. Within mitigation wetlands, emergent areas contained higher richness and diversity than open areas. These data indicate that mitigation and reference wetlands generally support similar invertebrate assemblages, especially among benthic populations. The few observed differences are likely attributable to differences in vegetative community composition and structure. Mitigation wetlands currently support abundant and productive invertebrate communities, and as such, provide quality habitat for wetland dependent wildlife species, especially waterbirds and anurans.  相似文献   

18.
In Estonia, as in other countries, the area of wetlands has diminished remarkably due to different utilization for economic needs. Comparatively large areas of natural wetlands have, however, been preserved. The country’s economic and political situation has changed rapidly since the regaining of independence in 1991 and accession to the European Union in 2004 brought about new challenges for the sustainable use of natural resources. This paper provides an update of conditions of wetlands in Estonia and, in part, represents an update of the relevant materials for Estonia that are described for the country when it was under the rule of the former USSR (Botch and Masing 1983, this volume). We review the diversity and status of wetlands in Estonia and describe the main problems and challenges of sustainable wetland use. Substantial progress has been achieved in Estonia in the area of wetland conservation and a significant proportion of valuable wetlands (a total of 33 wetland habitat types covering more than 300,000 ha) are legally protected and included in the integral and united system of protected areas. All Special Protection Areas and 80% of Special Conservation Areas in the Natura 2000 network represent a lesser or greater amount of wetland habitats. The main challenges of wetland preservation and use are: (1) management of drained wetland areas that have become sources of greenhouse gases; (2) attaining the sustainable use of peat resources and ensuring the restoration of cut-away peatlands; (3) maintenance of the traditional management of valuable semi-natural wetlands. In addition, the increasing pressure of various development projects and tourism on Estonia’s wetland resources need to be evaluated. Wetlands are also seen as an important basis for sustainable development and about 100 wetlands in Estonia that are used for primary or secondary treatment of wastewater. Energy production from wetland plant biomass is considered to be a promising source for small-scale heating plants.  相似文献   

19.
Environmental flow releases are a tool for wetland restoration, but there has been no systematic evaluation of their success. We systematically assessed 102 published studies from a wide range of wetland ecosystems across the globe to determine whether releasing environmental flows could maintain or promote biodiversity and increase ecosystem services, and which strategies were most effective. We found that environmental flow releases remarkably increased regulating services (sediment regulation and water purification) and supporting services (primary production and habitat maintenance), and maintained biodiversity and provisioning services. Biodiversity responses were positive only in river wetlands, and were negative in coastal, lake, and marsh wetlands; the overall delivery of ecosystem services responded positively in all ecosystem types except artificial wetlands. The effects were positive for ecosystem services under all environmental flow regimes, and seasonal minimum flow releases could maintain biodiversity and improve ecosystem services. We also found that long‐term environmental flow releases (years to decades) maintained biodiversity. Values of a change‐in‐flow parameter (D) ranging from 0 to 10% improved both biodiversity and ecosystem services. In summary, long‐term implementation, a high‐flow regime, and D ranging from 0 to 10% for the environmental flows promoted biodiversity and improved ecosystem services around the world, particularly in river wetlands. Regional‐level conclusions might be applicable to guide the implementation of environmental flow releases, but small sample sizes reduce their reliability. We also found that the effect sizes of environmental flow release projects for biodiversity and ecosystem services were significantly and positively correlated in rivers, but not in other wetlands.  相似文献   

20.
田自强  韩梅  张雷 《生态学报》2007,27(7):2812-2822
对西太湖平原河网区严重退化的河岸带湿地进行恢复的基础上,开展了恢复后湿地和退化湿地内植物群落物种多样性,生物量,植物干物质体内氮、磷含量,湿地水体中悬浮物含量、氮、磷营养物质浓度以及恢复后湿地内反硝化作用等湿地生态和水环境功能方面的比较研究。结果表明:(1)已恢复湿地群落结构趋于完整,物种多样性指数值较高,一般在1.7~3之间,均匀度在0.5~0.9之间波动。退化湿地物种丰富度低,多样性指数值较低,分别在0.3~1.5(H′),0.15~0.65(J)之间波动。在水花生(Alternanthera philoxeroides)入侵的群落内,种类稀少,且分布极不均匀,仅在0.3~1(H′)和0.1~0.3(J)之间波动,群落结构严重退化。(2)在植物生长旺盛期,1m2湿地内的芦苇(Phragmites communis)、香蒲(Typha orientalis)及茭草(Zizania latifolia)分别为42,18株和17株。其在湿地内的生物量分别为:4692,5142kg和2182kg;(3)上述物种单位干物质中的氮、磷平均含量分别达到2.88mg/g和2.09mg/g;沉水植物作为滨岸带湿地群落结构的重要组成部分,不仅具有高的生物量,而且吸收氮磷能力强,单位干物质氮、磷含量分别达到7.27mg/g和4.14mg/g;(4)植物对水体及沉积物中可溶性氮、磷的有效吸收以及颗粒态磷的自然沉降作用,使得上游来水中的总氮浓度流经湿地时,降至0.15~0.89mg/L之间,平均下降了85%;总磷浓度则由进水时的0.248~0.598mg/L,降至出水时的0.002~0.083mg/L;(5)滨岸带湿地对河水中悬浮物的有效拦截、滞留和吸附作用,使得入湖河水中的悬浮物含量降低了90%以上;(6)在高温缺氧的环境中,滨岸带湿地表现出较强的反硝化作用,且由河心向河岸逐渐增强的趋势。近河心处测定的N2O通量为0.034~0.068之间,到河岸处升至0.046~0.089。反硝化作用是削减水体中氮负荷的有效途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号