首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of serotonin (5-HT) on membrane potential, membrane resistance, and select ionic currents were examined in large pedal neurons (LP1, LP3) of the mollusk Hermissenda. Calcium (Ca) action potentials were evoked in sodium-free artificial seawater containing tetramethylammonium, tetraethylammonium, and 4-aminopyridine (0-Na, 4-AP, TEA ASW). They failed at stimulation rates greater than 0.5/sec and were blocked by cadmium (Cd). Under voltage clamp the calcium current (ICa) responsible for them also failed with repeated stimulation. Thus, ICa inactivation accounts for refractoriness of the Ca action potential. The addition of 10 microM 5-HT to 0-Na, 4-AP, TEA ASW produced a slight depolarization and increased excitability and input resistance. Under voltage clamp the background current decreased. The voltage-dependent inward, late outward, and outward tail currents, sensitive to Cd, increased. ICa inactivation persisted. Under voltage clamp with Ca influx blocked by Cd, the addition of 10 microM 5-HT decreased the remaining current uniformly over membrane potentials of -10 to -100 mV. Thus, 5-HT reduces a background current that is active within the physiological range of the membrane potential, voltage insensitive, independent of Ca influx, noninactivating, and not blocked by 4-AP or TEA.  相似文献   

2.
We have studied the effects of the potassium-blocking agent 4-aminopyridine (4-AP) on the action potential and membrane currents of the sheep cardiac Purkinje fiber. 4-AP slowed the rate of phase 1 repolarization and shifted the plateau of the action potential to less negative potentials. In the presence of 4-AP, the substitution of sodium methylsulfate or methanesulfonate for the NaCl of Tyrode's solution further slowed the rate of phase 1 repolarization, even though chloride replacement has no effect on the untreated preparation. In voltage clamp experiments, 4-AP rapidly and reversibly reduced the early peak of outward current that is seen when the Purkinje fiber membrane is voltage-clamped to potentials positive to -20 mV. In addition, 4-AP reduced the steady outward current seen at the end of clamp steps positive to -40 mV. 4-AP did not appear to change the slow inward current observed over the range of -60 to -40 mV, nor did it greatly change the current tails that have been used as a measure of the slow inward conductance at more positive potentials. 4-AP did not block the inward rectifying potassium currents, IK1 and IK2. A phasic outward current component that was insensitive to 4-AP was reduced by chloride replacement. We conclude that the early outward current has two components: a chloride-sensitive component plus a 4-AP-sensitive component. Since a portion of the steady-state current was sensitive to 4-AP, the early outward current either does not fully inactivate or 4-AP blocks a component of time-independent background current.  相似文献   

3.
Using the patch-clamp technique, we observed profound oscillations of the whole-vacuole outward current across the tonoplast of Mesembryanthemum crystallinum L. (common ice plant). These current oscillations showed a clear voltage dependence and appeared at membrane potentials more positive than 90–100 mV. This paper describes the oscillations in terms of two separate mechanisms. First, the Mesembryanthemum vacuolar membrane shows a negative slope conductance at membrane potentials more positive than 100–120 mV. The fact that the oscillations and the negative slope conductance show a similar threshold potential suggests that (part of) the same mechanism is involved in both phenomena. The second mechanism involved is the voltage drop across the series resistance. As a result, the potential actually experienced by the vacuolar membrane deviates from the command potential defined by the patch-clamp amplifier. This deviation depends in an Ohmic manner on the current magnitude. We suggest that the interplay of the negative slope conductance and the voltage drop across the series resistance can cause a positive feedback which is responsible for the current oscillations. Received: 30 April 1999/Revised: 9 September  相似文献   

4.
The voltage dependent ionic conductances were studied by analysing the phase plane trajectories of action potentials evoked by electrical stimulation of the sartorius muscles of the frog (Rana esculenta). The delayed outward potassium current was measured also under voltage clamp conditions on muscle fibres of either the frog (Rana esculenta) or Xenopus laevis. On analysing the effect of physostigmine decreasing the peak amplitude, the rate of both the rising and falling phases of the action potentials, it was revealed that the alkaloid at a concentration of 1 mmol/l reduced significantly both the delayed potassium conductance and the outward ionic current values during the action potentials. The inhibition of sodium conductance and inward ionic current was less expressed. The maximum value of delayed potassium conductance measured under voltage clamp conditions was decreased by 1 mmol/l physostigmine. The time constant determined from the development of delayed potassium conductance was increased at a given membrane potential. The voltage vs. n relationship describing the membrane potential dependence of the delayed rectifier was not influenced by physostigmine. It has been concluded that physostigmine changes the time course of the action potentials by decreasing the value of both voltage dependent ionic conductances and by slowing down their kinetics. It is discussed that results obtained from the phase plane analysis of complex pharmacological effects can only be accepted with some restrictions.  相似文献   

5.
A single channel current was studied in the membrane of the immature oocyte of the european frog (Rana esculenta) by using the "patch clamp" technique in the "cell attached" configuration. Single channel activity appeared as short outward currents when membrane potential was made positive inside; full activation required seconds to be complete, no inactivation being appreciable. Deactivation (or current block) upon membrane repolarization was so fast that no inward current could be detected in any case. The reversal potential, estimated by interpolating the I/V diagrams, was -30 mV using standard Ringer as electrode filling solution, and the elementary conductance was 95 pS. Neither reversal potential nor elementary conductance were affected by removal of external Ca2+ (Mg2+ or Ba2+ substitution) or external Cl- (methanesulphonate substitution). The reversal potential moved towards positive potentials by substituting external Na+ with K+, the magnitude of the shifts being consistent with a ratio PK/PNa = 6.4. A distinctive property of the current/voltage relation for this K-current is its anomalous bell-shape, the outward current displaying a maximum at membrane potentials around 75 mV with standard Ringer as electrode filling solution and tending to zero with more positive potentials.  相似文献   

6.
J Connor  L Barr    E Jakobsson 《Biophysical journal》1975,15(10):1047-1067
The electrical behavior of small single frog atrial trabeculae in the double sucrose gap has been investigated. The currents injected during voltage clamp experiments did not behave as predicted from the assumption of spatial uniformity of the voltage across a Hodgkin-Huxley membrane. Much of the difference is due to the geometrical complexities of this tissue. Nonetheless, two transient inward currents have been identified, the faster of which is blocked by tetrodotoxin (TTX). The magnitude of the slower transient varies markedly between preparations but always increases in a given preparation with increase of external calcium. The fast transient current traces, at small to intermediate depolarizations, are often marred by the presence of notches and secondary peaks due most probably to the loss of space clamp conditions. In many preparations these could be removed by reducing the current magnitude through application of a partially-blocking dose of TTX. Conversely, in the preparations whose fast transient was fully blocked by TTX, notches and secondary peaks in the slow transient could by induced through increasing calcium concentration and thereby the slow current magnitude. Previously used techniques for the measurement of the reversal potential of the fast inward transient have been shown to be invalid. In so far as they can be measured, the reversal potentials of the fast and slow inward transient are in the same neighborhood, i.e. around 120 mV from rest. The true values may be quite a bit apart. The total charge flow in the capacitive transient was measured for different sized nodes and preparations. From these data and estimates of plasma membrane area per unit trabecular volume, specific membrane capacitances of around 3 muF/cm2 were calculated for small bundles. The apparent ion current densities on this basis are approximately 1/10 of those measured in axons. The capacitive current occurring in small bundles decayed as the sum of at least three exponential functions of time. On the basis of these data and the anomalously large stable node widths, we suggest a coaxial core model of the preparation with the inner elements in series with an additional large extracellular resistance.  相似文献   

7.
The whole-cell configuration of the patch clamp technique was used to study both outward and inward ion currents across the plasma membrane of tobacco (Nicotiana tabacum) protoplasts from cell-suspension cultures. The ion currents across the plasma membrane were analyzed by the application of stepwise potential changes from a holding potential or voltage ramps. In all protoplasts, a voltage- and time-dependent outward rectifying current was present. The conductance increased upon depolarization of the membrane potential (to >0 mV) with a sigmoidal time course. The reversal potential of the outward current shifted in the direction of the K+ equilibrium potential upon changing the external K+ concentration. The outward current did not show inactivation. In addition to the outward rectifying current, in about 30% of the protoplasts, a time- and voltage-dependent inward rectifying current was present as well. The inward rectifying current activated upon hyperpolarization of the membrane potential (<-100 mV) with an exponential time course. The reversal potential of the inward conductance under different ionic conditions was close to the K+ equilibrium potential.  相似文献   

8.
An improved method for internally perfusing the Myxicola giant axon based on removing the axoplasm by dispersing it in KCl-KF salt solutions is described. Proteolytic enzymes are not introduced. With this improved method perfused preparations show long-term stability of their electrical properties and the ability to generate action potentials for many hours. Mean initial values for resting membrane potential, action potential amplitude, and peak inward current were -68 mV, 118 mV, and 3.62 mA/cm2, respectively. Mean resting membrane resistance was 75% of that in intact axons. In one series of voltage clamp experiments, perfused preparations remained excitable for a mean period of 5 1/2 h, but this period could exceed 10 h. 4 min are needed for exchange of internal solutions. At least 50 mM KF is required both in the axoplasm liquefying solution and in the standard perfusate to obtain stable preparations.  相似文献   

9.
Axon voltage-clamp simulations. II. Double sucrose-gap method.   总被引:1,自引:0,他引:1       下载免费PDF全文
This is the second in a series of four papers on the simulation of the voltage clamp of cylindrical excitable cells. In this paper we evaluate the double sucrose-gap voltage-clamp technique for the squid and lobster giant axons. Using the Crank-Nicolson method of solution of the cable equations and differential equations representing the voltage clamp circuit we studied the effect of length of the sucrose gap "node" on the voltage profile along an excitable cell during a simulated voltage clamp. The voltage gradients along the region of the cell within the node produce "notches" in the current recording as well as changes in the magnitude of the sodium and potassium current for a given voltage step. Our results show that good voltage clamp control requires node lengths less than one-half the axon diameter.  相似文献   

10.
An improved vaseline gap voltage clamp for skeletal muscle fibers   总被引:39,自引:20,他引:19       下载免费PDF全文
A Vaseline gap potentiometric recording and voltage clamp method is developed for frog skeletal muscle fibers. The method is based on the Frankenhaeuser-Dodge voltage clamp for myelinated nerve with modifications to improve the frequency response, to compensate for external series resistance, and to compensate for the complex impedance of the current-passing pathway. Fragments of single muscle fibers are plucked from the semitendinosus muscle and mounted while depolarized by a solution like CsF. After Vaseline seals are formed between fluid pools, the fiber ends are cut once again, the central region is rinsed with Ringer solution, and the feedback amplifiers are turned on. Errors in the potential and current records are assessed by direct measurements with microelectrodes. The passive properties of the preparation are simulated by the "disk" equivalent circuit for the transverse tubular system and the derived parameters are similar to previous measurements with microelectrodes. Action potentials at 5 degrees C are long because of the absence of delayed rectification. Their shape is approximately simulated by solving the disk model with sodium permeability in the surface and tubular membranes. Voltage clamp currents consist primarily of capacity currents and sodium currents. The peak inward sodium current density at 5 degrees C is 3.7 mA/cm2. At 5 degrees C the sodium currents are smoothly graded with increasing depolarization and free of notches suggesting good control of the surface membrane. At higher temperatures a small, late extra inward current appears for small depolarizations that has the properties expected for excitation in the transverse tubular system. Comparison of recorded currents with simulations shows that while the transverse tubular system has regenerative sodium currents, they are too small to make important errors in the total current recorded at the surface under voltage clamp at low temperature. The tubules are definitely not under voltage clamp control.  相似文献   

11.
The contribution of axonal activity to the ionic currents which generate bursting pacemaker activity was studied by using the two-electrode voltage-clamp technique in Aplysia bursting neuron somata in conjunction with intraaxonal voltage recordings. Depolarizing voltage-clamp pulses applied to bursting cell somata triggered axonal action potentials. The voltage-clamp current recording exhibited transient inward current "notches" corresponding to each of the axonal spikes. The addition of 50 microM tetrodotoxin (TTX) to the bathing medium blocked the fast axonal spikes and current notches, revealing a slower axonal spike which was blocked by the replacement of external Ca2+ with Co2+. The inward current evoked by applying a depolarizing voltage-clamp pulse in the soma is distorted by the occurrence of the axonal Ca2+ spike. Elimination of the axonal spike, by injecting hyperpolarizing current into the axon, changes both the time course and the magnitude of the inward current. The axonal Ca2+ spikes are followed by a series of Ca2+-dependent afterpotentials: a rapid postspike hyperpolarization, a depolarizing afterpotential (DAP) and, finally, a long-lasting postburst hyperpolarization. The long-lasting hyperpolarization is not blocked by 50 mM external tetraethyl ammonium, an effective blocker of Ca2+-activated K+ current [IK(Ca)], and does not appear to reverse at EK. Hence, the axonal long-lasting hyperpolarization may not be due to IK(Ca). Somatic voltage-clamp pulses in bursting neurons are followed by a slow inward tail current, which is sometimes coincident with a DAP in the axon. In some cells, the amplitude of the slow inward tail current is greatly reduced if axonal spikes and DAPs are prevented by hyperpolarization of the axon, while, in other cells, elimination of axonal activity has little effect. Therefore, the slow inward tail current is not necessarily an artifact of poor voltage-clamp control over the axonal membrane potential but probably results from the activation of an ionic conductance mechanism located partly in the axon and partly in the soma.  相似文献   

12.
Voltage clamp responses of a single excitable fiber were simulated using a core conductor model including a high external resistance (Rs) in series to the fiber membrane to allow for intercellular clefts in a multifiber preparation. In terms of specific resistance, Rs was between 68 and 264 omega cm2. Internal resistivity (Ri) was taken to be zero or 200 omega cm. The aim of the study was to quantify the expected antagonistic effects of external and internal resistances on Na current measurements. With Ri = 0, the external resistance was found to cause a strong depression of fast inward current compared to an ideal space clamp at command potentials between -30 and 30 mV. With Ri = 200 omega cm, the depression of inward current was partially removed. The effects of Rs and Ri on membrane current measurement were illustrated by cable analysis assuming a quasi-steady state of the fiber at peak time of inward current.  相似文献   

13.
A new dissection procedure for preparing Myxicola giant axons for observation under voltage clamp is described. Preparation time is generally 40–45 min. 65–70% of the preparations attempted may be brought through the entire procedure, including insertion of the long internal electrode, and support an initial action potential amplitude of 100 mv or greater. Mean values for axon diameter, resting membrane potential, action potential amplitude, maximum peak inward transient current, and resting membrane resistance are 560 µ, —66.5 mv, 112 mv, 0.87 ma/cm2 and 1.22 KΩ cm 2 respectively. Cut branches do not seem to be a problem in this preparation. Behavior under voltage clamp is reasonably stable over several hours. Reductions in maximum inward transient current of 10% and in steady-state current of 5–10% are expected in the absence of any particular treatment. Tetrodotoxin blocks the action potential and both the inward and outward transient current, but has no effect on either the resting membrane potential or the steady-state current. This selective action of tetrodotoxin on the transient current is taken as an indication that this current component is probably carried by Na.  相似文献   

14.
Using the whole-cell voltage clamp (to determine the membrane current) and current clamp (to determine membrane potential) methods in conjunction with the nystatin-perforation technique, we studied the effect of methacholine (MCh) and other secretagogues on whole cell K and Cl currents in dissociated rhesus palm eccrine sweat clear cells. Application of MCh by local superfusion induced a net outward current (at a holding potential of ?60 mV and a clamp voltage of 0 mV), and a transient hyperpolarization by 5.6 mV, suggesting the stimulation of K currents. The net outward current gradually changed to the inward (presumably Cl) currents over the next 1 to 2 min of continuous MCh stimulation. During this time the membrane potential also changed from hyperpolarization to depolarization. The inward currents were increasingly more activated than outward (presumably K) currents during repeated MCh stimulations so that a net inward current (at ?60 mV) was observed after the fourth or fifth MCh stimulation. Ionomycin (10 μm) also activated both inward and outward current. The observed effect of MCh was abolished by reducing extracellular [Ca] to below 1 nm (Ca-free + 1 mm EGTA in the bath). MCh-activated outward currents were inhibited by 5 mm Ba and by 0.1 mm quinidine, although these agents also suppressed the inward currents. Bi-ionic potential measurements indicated that the contribution of Na to the membrane potential was negligible both before and after MCh or ISO (isoproterenol) stimulations and that the observed membrane current was carried mainly by K and Cl. MCh increased the bi-ionic potential by step changes in external K and Cl concentrations, further supporting that MCh-induced outward and inward currents represent K and Cl currents, respectively. Stimulation with ISO or FK (forskolin) resulted in a depolarization by about 55 mV and a net inward (most likely Cl) current independent of external Ca. CT-cAMP mimicked the effects of FK and ISO. The bi-ionic potential, produced by step changes in the external Cl concentration, increased during ISO stimulation, whereas that of K decreased. This indicates that the ISO-induced inward current is due to Cl current and that K currents were unchanged or slightly decreased during stimulation with ISO or 10 μm FK. Both myoepithelial and dark cells responded only to MCh (but not to FK) with a marked depolarization of the membrane potential due to activation of Cl, but not K, currents. We conclude that MCh stimulates Ca-dependent K and Cl currents, whereas ISO stimulates cAMP-dependent Cl currents in eccrine clear cells.  相似文献   

15.
The effects of Cs+, 5-25 mM, were studied in cat and guinea pig papillary muscles using voltage clamp and current clamp techniques. In solutions containing normal K+, the major effects of Cs+ were depolarization of the resting potential and reduction of the delayed outward current (ixl) between -80 and -20 mV. Both inward and outward portions of the isochronal current voltage relation (l-s clamps) were reduced by extracellular Cs+. This resulted in a substantial reduction of inward rectification and, by subtraction from the normal I-V relationship, the definition of a Cs+-sensitive component of current. Under current clamp conditions, 5-10 mM Cs+ produced a dose-dependent slowing of repetitive firing induced by depolarization. At higher concentrations (25 mM) the resting potential was depolarized and repetitive activity could not be induced by further depolarization. However, release of hyperpolarizing pulses was followed by prolonged bursts of repetitive action potentials, suggesting partial reversal of blockade or participation of another pacemaker process. The experimental results and a numerical simulation show that under readily attainable conditions, reduction in an outward pacemaker current may slow pacemaker activity.  相似文献   

16.
Steady-state current-voltage characteristics of the membrane and ionic currents arising during changes in membrane potential in bursting neurons ofHelix pomatia were studied by the voltage clamp method. The steady-state current-voltage characteristics of the membrane were shown to have a nonlinear region. Replacement of sodium ions by Tris-HC1 ions in the external solution completely abolishes this nonlinearity. Hyperpolarization of the membrane under voltage clamp conditions leads to the development of an outward current which reaches a maximum and then is inactivated. This current has a reversal potential in the region of the potassium equilibrium potential. Depolarization of the membrane to the threshold value for excitation of uncontrollable regions of the axon hillock causes the appearance of a slow inward current. After reaching a maximum, the inward current falls to zero. A model of generation of waves in a bursting neuron is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 193–202, March–April, 1978.  相似文献   

17.
An optical determination of the series resistance in Loligo   总被引:1,自引:1,他引:0       下载免费PDF全文
The resistance in series with the membrane capacitance in the giant axon of the squid Loligo pealei was measured using potentiometric probes that exhibit absorbance changes proportional to the voltage across the plasma membrane proper. The method relies upon the fact that a voltage drop across the series resistance produces a deviation in the true transmembrane voltage from that imposed by a voltage clamp. Optical measurement of the true transmembrane potential, together with electrical measurement of the ionic current, permits the immediate determination of the series resistance by Ohm's law. An alternative method monitored the amount of electronic series resistance compensation required to force the optical signal to match the shape of the reference potential. The value of the series resistance measured in artificial seawater was 3.78 +/- 0.95 omega X cm2. The estimated value of the contribution of the Schwann cell layer to the series resistance was 2.57 +/- 0.89 omega X cm2.  相似文献   

18.
Summary Membrane ionic currents were measured in pregnant rat uterine smooth muscle under voltage clamp conditions by utilizing the double sucrose gap method, and the effects of conditioning pre-pulses on these currents were investigated. With depolarizing pulses, the early inward current was followed by a late outward current. Cobalt (1mm) abolished the inward current and did not affect the late outward currentper se, but produced changes in the current pattern, suggesting that the inward current overlaps with the initial part of the late outward current. After correction for this overlap, the inward current reached its maximum at about +10 mV and its reversal potential was estimated to be +62 mV. Tetraethylammonium (TEA) suppressed the outward currents and increased the apparent inward current. The increase in the inward current by TEA thus could be due to a suppression of the outward current. The reversal potential for the outward current was estimated to be –87 mV. Conditioning depolarization and hyperpolarization both produced a decrease in the inward current. Complete depolarization block occurred at a membrane potential of –20 mV. Conditioning hyperpolarization experiments in the presence of cobalt and/or TEA revealed that the decrease in the inward current caused by conditioning hyperpolarization was a result of an increase in the outward current overlapping with the inward current. It appears that a part of the potassium channel population is inactivated at the resting membrane potential and that this inactivation is removed by hyperpolarization.  相似文献   

19.
Calcium currents in squid giant axon.   总被引:1,自引:0,他引:1  
Voltage-clamp experiments were carried out on intracellularly perfused squid giant axons in a Na-free solution of 100 mM CaCl2+sucrose. The internal solution was 25 mM CsF+sucrose or 100 mM RbF+50mM tetraethylammonium chloride+sucrose. Depolarizing voltage clamp steps produced small inward currents; at large depolarizations the inward current reversed into an outward current. Tetrodotoxin completely blocked the inward current and part of the outward current. No inward current was seen with 100 mM MgCl2+sucrose as internal solution. It is concluded that the inward current is carried by Ca ions moving through the sodium channel. The reversal potential of the tetrodotoxin-sensitive current was +54mV with 25 mM CsF+sucrose inside and +10 mV with 100 mM RbF+50 mM tetraethylammonium chloride+sucrose inside. From the reversal potentials measured with varying external and internal solutions the relative permeabilities of the sodium channel for Ca, Cs and Na were calculated by means of the constant field equations. The results of the voltage-clamp experiments are compared with measurements of the Ca entry in intact axons.  相似文献   

20.
Electrical activity in the fertilized egg of the tunicate Clavelina was studied with microelectrode recording and voltage clamp techniques. The resting potential could assume either of two stable values (approximately ?70 or ?30 mV) and could be shifted between these values by direct current stimulation. Spontaneous shifts between two stable resting potentials were also seen. Egg cells produced action potentials spontaneously and in response to depolarizing stimuli. Inward currents were carried by both Na and Ca ions and a prominent outward potassium current was seen with depolarization to voltages above ?15 mV. The steady-state current-voltage relationship (I–V curve) of the membrane showed two voltages where the net membrane current equaled zero: approximately ?35 and ?70 mV. Between these two voltages, membrane current was inward and carried by noninactivating Na and Ca currents. Inward rectification, which was blocked by external Rb, occurred at voltages below ?70 mV. The voltage dependence of inward rectification is thought by the authors to be important for establishing the more negative resting potential; it is also thought the presence of inward current which does not inactivate completely at voltages more negative than about ?20 mV is an important determinant of the more depolarized resting potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号