首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Topoisomerase II poisons like Adriamycin (ADR, doxorubicin) are clinically important chemotherapeutic agents. Adriamycin-induced DNA damage checkpoint activates ATM and ATR, which could in turn inhibit the cell cycle engine through either CHK1 or CHK2. In this study, we characterized whether CHK1 or CHK2 is required for Adriamycin-induced checkpoint. We found that both CHK1 and CHK2 were phosphorylated after Adriamycin treatment. Several lines of evidence from dominant-negative mutants, short hairpin RNA (shRNA), and knockout cells indicated that CHK1, but not CHK2, is critical for Adriamycin-induced cell cycle arrest. Disruption of CHK1 function bypassed the checkpoint, as manifested by the increase in CDC25A, activation of CDC2, increase in histone H3 phosphorylation, and reduction in cell survival after Adriamycin treatment. In contrast, CHK2 is dispensable for Adriamycin-induced responses. Finally, we found that CHK1 was upregulated in primary hepatocellular carcinoma (HCC), albeit as an inactive form. The presence of a stockpile of dormant CHK1 in cancer cells may have important implications for treatments like topoisomerase II poisons. Collectively, the available data underscore the pivotal role of CHK1 in checkpoint responses to a variety of stresses.  相似文献   

2.
DNA damage checkpoint is one of the surveillance systems to maintain genomic integrity. Checkpoint systems sense the DNA damage and execute cell cycle arrest through inhibiting the activity of cell cycle regulators. This pathway is essential for the maintenance of genome stability and prevention of tumor development. Recent studies have showed that the cellular responses towards DNA damage, such as cell cycle arrest, DNA repair, chromatin remodeling, and apoptosis are well coordinated. Here we describe the molecular mechanisms of checkpoint activation in response to DNA damage and the correlation between checkpoint gene mutation and genomic instability.  相似文献   

3.
DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.  相似文献   

4.
In response to genomic insults cells trigger a signal transduction pathway, known as DNA damage checkpoint, whose role is to help the cell to cope with the damage by coordinating cell cycle progression, DNA replication and DNA repair mechanisms. Accumulating evidence suggests that activation of the first checkpoint kinase in the cascade is not due to the lesion itself, but it requires recognition and initial processing of the lesion by a specific repair mechanism. Repair enzymes likely convert a variety of physically and chemically different lesions to a unique common structure, a ssDNA region, which is the checkpoint triggering signal. Checkpoint kinases can modify the activity of repair mechanisms, allowing for efficient repair, on one side, and modulating the generation of the ssDNA signal, on the other. This strategy may be important to allow the most effective repair and a prompt recovery from the damage condition. Interestingly, at least in some cases, if the damage level is low enough the cell can deal with the lesions and it does not need to activate the checkpoint response. On the other hand if damage level is high or if the lesions are not rapidly repairable, checkpoint mechanisms become important for cell survival and preservation of genome integrity.  相似文献   

5.
A checkpoint responding to DNA damage in G2 results in a delay in the onset of mitosis through inhibition of p34cdc2 kinase activity via maintenance of inhibitory tyrosine phosphorylation. Genetic analyses of this checkpoint in fission yeast have identified single alleles of several genes, suggesting these screens are not yet saturating, and hence further genes await identification. To fully understand the complexity of this checkpoint it will be necessary to define all the genes involved. To this end we screened for new mutants defective in the ability to delay mitosis in the presence of DNA-damaging agents. Twenty-four mutants were isolated that were defective in UV-C and MMS-induced checkpoint delay. Amongst these mutants was an allele of cut5 that was also defective in the checkpoint responses. We show here, contrary to previous reports, that the UV-C induced checkpoint response is defective in cut5 mutants. Therefore, like all other checkpoint mutants, cut5 is required for G2 checkpoint arrest following DNA damage, regardless of the nature of the lesions involved. Received: 24 July 1998 / Accepted: 14 September 1998  相似文献   

6.
PTEN (phosphatase and tensin homolog), a tumor suppressor frequently mutated in human cancer, has various cytoplasmic and nuclear functions. PTEN translocates to the nucleus from the cytoplasm in response to oxidative stress. However, the mechanism and function of the translocation are not completely understood. In this study, topotecan (TPT), a topoisomerase I inhibitor, and cisplatin (CDDP) were employed to induce DNA damage. The results indicate that TPT or CDDP activates ATM (ATM serine/threonine kinase), which phosphorylates PTEN at serine 113 and further regulates PTEN nuclear translocation in A549 and HeLa cells. After nuclear translocation, PTEN induces autophagy, in association with the activation of the p-JUN-SESN2/AMPK pathway, in response to TPT. These results identify PTEN phosphorylation by ATM as essential for PTEN nuclear translocation and the subsequent induction of autophagy in response to DNA damage.  相似文献   

7.
 以体外培养的不同代龄的人胚肺二倍体成纤维细胞(2 B S)为对象,紫外线诱导 D N A 损伤后,观察细胞形态、增殖特性、细胞周期、 D N A 修复变化等细胞应答以及 gadd153、p21 W A F1/ C I P1/ S D I1、p53 等基因的转录水平的表达变化.结果显示:紫外线诱导 D N A 损伤后,衰老(> 55 代)2 B S细胞形态及增殖能力的改变不如年轻细胞(< 30 代)显著;不同代龄的细胞损伤后均出现 G1 期阻滞现象,年轻细胞 G1 期阻滞率明显高于衰老细胞( P< 005);衰老细胞总的修复能力较年轻细胞明显下降( P< 001);同时,gadd153、p21、p53 等的可诱导性均低于年轻 2 B S细胞.由此,分别在细胞水平与基因水平反映了衰老细胞经紫外线照射损伤后的细胞应答变化与修复机能减退的关系.  相似文献   

8.
The DNA damage and replication checkpoints are signaling mechanisms that regulate and coordinate cellular responses to genotoxic conditions. Unlike typical signal transduction mechanisms that respond to one or a few stimuli, checkpoints can be activated by a broad spectrum of extrinsically or intrinsically derived DNA damage or replication interference. Recent investigations have shed light on how the damage and replication checkpoints are able to respond to such diverse stimuli. The activation of checkpoints not only attenuates cell cycle progression but also facilitates DNA repair and recovery of faltered replication forks, thereby preventing DNA lesions from being converted to inheritable mutations. Recently, more checkpoint targets from the cell cycle and DNA replication apparatus have been identified, revealing the increasing complexity of the checkpoint control of the cell cycle. In this article, we discuss current models of the DNA damage and replication checkpoints and highlight recent advances in the field.  相似文献   

9.
Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.  相似文献   

10.
11.
DNA damage inflicted by the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, or by UV254nm, stimulated the catabolism of protein-bound poly(ADP-ribose) in the chromatin of cultured hepatocytes. The stimulation was highest at the largest doses of DNA-damaging treatment. As a consequence, the half-life of ADP-ribosyl polymers may drop to less than 41 s. This rapid turnover contrasts with the slow catabolism of a constitutive fraction of polymers exhibiting a half-life of 7.7 h. Our data suggest that post-incisional stimulation of poly(ADP-ribose) biosynthesis in DNA-excision repair is coupled with an adaptation of poly(ADP-ribose) catabolism in mammalian cells.  相似文献   

12.
The DNA damage checkpoint, when activated in response to genotoxic damage during S phase, arrests cells in G2 phase of the cell cycle. ATM, ATR, Chk1 and Chk2 kinases are the main effectors of this checkpoint pathway. The checkpoint kinases prevent the onset of mitosis by eliciting well characterized inhibitory phosphorylation of Cdk1. Since Cdk1 is required for the recruitment of condensin, it is thought that upon DNA damage the checkpoint also indirectly blocks chromosome condensation via Cdk1 inhibition. Here we report that the G2 damage checkpoint prevents stable recruitment of the chromosome-packaging-machinery components condensin complex I and II onto the chromatin even in the presence of an active Cdk1. DNA damage-induced inhibition of condensin subunit recruitment is mediated specifically by the Chk2 kinase, implying that the condensin complexes are targeted by the checkpoint in response to DNA damage, independently of Cdk1 inactivation. Thus, the G2 checkpoint directly prevents stable recruitment of condensin complexes to actively prevent chromosome compaction during G2 arrest, presumably to ensure efficient repair of the genomic damage.  相似文献   

13.
Summary The major driving forces in the eukaryotic cell cycle are the cyclin-dependent kinases (Cdk). Cdks can be activated through dephosphorylation of inhibitory phosphorylations catalyzed by the Cdc25 phosphatase family. In higher-eukaryotic cells, there exist three Cdc25 family members, Cdc25A, Cdc25B, and Cdc25C. While Cdc25A plays a major role at the G1-to-S phase transition, Cdc25B and C are required for entry into mitosis. The regulation of Cdc25C is crucial for the operation of the DNA-damage checkpoint. Two protein kinases, Chk1 and Cds1, can be activated in response to DNA damage or in the presence of unreplicated DNA. Chk1 and Cds1 may phosphorylate Cdc25C to prevent entry into mitosis through inhibition of Cdc2 (Cdk1) dephosphorylation.  相似文献   

14.
Previous reports have indicated that DNA-damaging treatments including certain anticancer therapeutics cause death of postmitotic nerve cells both in vitro and in vivo. Accordingly, it has become important to understand the signaling events that control this process. We recently hypothesized that certain cell cycle molecules may play an important role in neuronal death signaling evoked by DNA damage. Consequently, we examined whether cyclin-dependent kinase inhibitors (CKIs) and dominant-negative (DN) cyclin-dependent kinases (CDK) protect sympathetic and cortical neurons against DNA-damaging conditions. We show that Sindbis virus–induced expression of CKIs p16ink4, p21waf/cip1, and p27kip1, as well as DN-Cdk4 and 6, but not DN-Cdk2 or 3, protect sympathetic neurons against UV irradiation– and AraC-induced death. We also demonstrate that the CKIs p16 and p27 as well as DN-Cdk4 and 6 but not DN-Cdk2 or 3 protect cortical neurons from the DNA damaging agent camptothecin. Finally, in consonance with our hypothesis and these results, cyclin D1–associated kinase activity is rapidly and highly elevated in cortical neurons upon camptothecin treatment. These results suggest that postmitotic neurons may utilize Cdk4 and 6, signals that normally control proliferation, to mediate death signaling resulting from DNA-damaging conditions.  相似文献   

15.
16.
Chk2 is a key player of the DNA damage signalling pathway. To identify new regulators of this kinase, we performed a yeast two-hybrid screen and found that Chk2 associated with the B' regulatory subunit of protein phosphatase PP2A. In vitro GST-Chk2 pulldowns demonstrated that B'gamma isoforms bound to Chk2 with the strongest apparent affinity. This was confirmed in cellulo by co-immunoprecipitation after overexpression of the respective partners in HEK293 cells. The A and C subunits of PP2A were present in the complexes, suggesting that Chk2 was associated with a functionnal PP2A. In vitro kinase assays showed that B'gamma3 was a potent Chk2 substrate. This phosphorylation increased the catalytic phosphatase activity of PP2A measured on MAP kinase-phosphorylated myelin basic protein as well as on autophosphorylated Chk2. Finally, we demonstrated that overexpressing B'gamma3 in HEK293 suppressed the phosphorylation of Chk2 induced by a genotoxic treatment, suggesting that PP2A may counteract the action of the checkpoint kinase in living cells.  相似文献   

17.
Targeted gene repair, a form of oligonucleotide-directed mutagenesis, employs end-modified single-stranded DNA oligonucleotides to mediate single-base changes in chromosomal DNA. In this work, we use a specific 72-mer to direct the repair of a mutated eGFP gene stably integrated in the genome of DLD-1 cells. Corrected cells express eGFP that can be identified and quantitated by FACS. The repair of this mutant gene is dependent on the presence of a specifically designed oligonucleotide and the frequency with which the mutation is reversed is affected by the induction of DNA damage. We used hydroxyurea, VP16 (etoposide), and thymidine to modulate the rate of DNA replication through the stalling of the replication forks or the introduction of lesions. Addition of hydroxyurea or VP16 before the electroporation of the oligonucleotide, results in an accumulation of double-strand breaks (DSB) whose repair is facilitated by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The addition of thymidine results in DNA damage within replication forks, damage that is repaired through the process of homologous recombination. Our data suggest that gene repair activity is elevated when DNA damage induces or activates the homologous recombination pathway.  相似文献   

18.
DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.  相似文献   

19.
Flow cytometry is a valuable tool in biomedical and animal sciences. However, equipment used for such analysis presents limitations at field conditions, suggesting then preservation procedures for future analysis at laboratory conditions. In this study, freezing at low (−20 °C), ultra-low (−80 °C) and cryogenic temperatures (−196 °C, i.e. liquid nitrogen) were used as preservation procedures of fish tissue. Samples were maintained in 0.9% NaCl or lysing solution, and stored at the temperatures above for 0 (fresh control), 60, 120 and 180 days of storage. After storage, the samples were thawed and proceeded to flow cytometric analysis. Storage at low temperatures (−20 °C), both in lysing and 0.9% NaCl, exhibited poor results when analyzed after 60, 120 and 180 days, showing noisy peaks, deviation in the DNA content and absence of peaks. Ultralow (−80 °C) and cryogenic (−196 °C) temperatures, both in lysing solution and 0.9% NaCl, showed good results and high quality of histograms. Both storage procedures gave similar histograms and DNA content in comparison with control group (fresh) even after 60, 120 and 180 days of storage, exhibiting the main peak at 2C content from diploid cells and a secondary peak at 4C derived from dividing cells. In conclusion, samples may be stored for 180 days at −80 °C and −196 °C in both, 0.9% NaCl or lysing solution. As cryogenic temperatures in liquid nitrogen permits indefinite storage, this procedure should be used for long-term preservation.  相似文献   

20.
Antimitotic spindle poisons are among the most important chemotherapeutic agents available. However, precocious mitotic exit by mitotic slippage limits the cytotoxicity of spindle poisons. The MAD2-binding protein p31(comet) is implicated in silencing the spindle assembly checkpoint after all kinetochores are attached to spindles. In this study, we report that the levels of p31(comet) and MAD2 in different cell lines are closely linked with susceptibility to mitotic slippage. Down-regulation of p31(comet) increased the sensitivity of multiple cancer cell lines to spindle poisons, including nocodazole, vincristine, and Taxol. In the absence of p31(comet), lower concentrations of spindle poisons were required to induce mitotic block. The delay in checkpoint silencing was induced by an accumulation of mitotic checkpoint complexes. The increase in the duration of mitotic block after p31(comet) depletion resulted in a dramatic increase in mitotic cell death upon challenge with spindle poisons. Significantly, cells that are normally prone to mitotic slippage and resistant to spindle disruption-mediated mitotic death were also sensitized after p31(comet) depletion. These results highlight the importance of p31(comet) in checkpoint silencing and its potential as a target for antimitotic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号