首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low triacylglycerol concentration in inguinal tissue of newborn rats did not change during the first 6h after birth, despite the relatively high lipoprotein lipase activity in the tissue. Subsequently triacylglycerol concentration and enzyme activity rose in parallel. The results show that lipoprotein lipase activity was present in the tissue before fat accumulation.  相似文献   

2.
3.
4.
Tissue-specific regulation of LPL has been widely studied in rats. Previous studies reported that in vivo administration of adrenaline and acute stress cause an increase in plasma LPL activity coinciding with a decrease in white adipose tissue (WAT) LPL activity. We studied the speed of LPL activity changes during 30 min of stress by immobilization (IMMO) in rats. A first experimental approach in permanently cannulated rats permitted sequential blood sampling in the same animal during IMMO and the obtaining of hemodynamic parameters. In a second experimental approach, animals were euthanized at different times after the start of IMMO to determine LPL activity in tissues. Stress was characterized by rises in blood pressure, heart rate, plasma corticosterone, and available circulating energy substrates. Five min after the start of IMMO, LPL activity fell in retroperitoneal WAT and increased in plasma. These data show the quickest LPL activity change ever described in response to a physiological situation. The speed and simultaneity of these changes suggest that the release from endothelium to the bloodstream may constitute a fast nonexplored mechanism of tissue LPL activity regulation, involved in the lipid energy-substrate redistribution between tissues needed to prepare the "fight-or-flight" response.  相似文献   

5.
This work was designed to study the effect of different lipid sources on the activities of lipoprotein lipase and lipogenic enzymes in adipose tissue from rats fedad libitum or energy-controlled diets. Male Wistar rats were fed diets containing 40% of energy as fat (olive oil, sunflower oil, palm oil or beef tallow), for 4 wk. Underad libitum feeding no differences were found among dietary fat groups in final body weight, adipose tissue weights and total body fat. Under energy-controlled feeding, despite isoenergetic intake, rats fed the beef tallow diet gained significantly less weight than rats fed the other three diets. Beef tallow fed rats showed the lowest values for adipose tissue weights and total body fat. When rats had free access to food no effect of dietary lipid source on lipogenic enzyme activities was found. In contrast, under energy-controlled feeding rats fed the beef tallow diet showed significantly higher activities of glucose-6-phosphate dehydrogenase and fatty acid synthase than rats fed the other three diets. Heparin-releasable lipoprotein lipase activity in perirenal and subcutaneous adipose tissues was not different among rats fed olive oil, safflower oil, palm oil or beef tallow. When comparing both adipose tissue anatomical locations, significantly higher activities were found in subcutaneous than in perirenal fat pad independently of dietary fat. In conclusion, under our experimental protocol, lipogenesis in rat adipose tissue does not seem to be affected by dietary fat type.  相似文献   

6.
Lipoprotein lipase (LPL), a key enzyme for triglyceride hydrolysis, is an insulin-dependent enzyme and mainly synthesized in white adipose tissue (WAT) and skeletal muscles (SM). To explore how pioglitazone, an enhancer of insulin action, affects LPL synthesis, we examined the effect of pioglitazone on LPL mRNA levels in WAT or SM of brown adipose tissue (BAT)-deficient mice, which develop insulin resistance and hypertriglyceridemia. Both LPL mRNA of WAT and SM were halved in BAT-deficient mice. Pioglitazone increased LPL mRNA in WAT by 8-fold, which was substantially associated with a 4-fold increase of peroxisome proliferator activated receptor (PPAR)-gamma mRNA (r=0.97, p<0.0001), whereas pioglitazone did not affect LPL mRNA in SM. These results suggest that pioglitazone exclusively increases LPL production in WAT via stimulation of PPAR-gamma synthesis. Since pioglitazone does not affect LPL production in SM, this would contribute to prevent the development of insulin resistance due to lipotoxicity.  相似文献   

7.
This study evaluated the individual and combined effects of exercise training and intermittent cold exposure of similar energy cost on serum lipids and lipoprotein lipase (LPL) activity on epididymal white (WAT) and interscapular brown (BAT) adipose tissues of the rat. The animals were subjected daily to 2 h of treadmill running at 24 degrees C or for the same period of time at -5 degrees C, with or without exercise, for 28 days. Exercise training lowered serum triglycerides (P less than 0.01), whereas serum cholesterol was reduced by cold exposure (P less than 0.05). Cholesterol lowering occurred in the lipoproteins of lower densities. WAT weight was diminished by both treatments. Exercise training had an overall lowering effect on WAT total LPL activity (P less than 0.05), whereas cold exposure did not affect enzyme activity significantly. Exercise and intermittent cold interacted on BAT weight. Cold increased total BAT LPL activity (P less than 0.03), whereas simultaneous exercise in the cold greatly diminished this effect. Serum insulin levels were not affected by either treatment. Thus, in WAT, intermittent exposure to cold did not have any lasting effect on LPL activity, whereas exercise training decreased the latter. In contrast, exercise did not influence LPL in BAT of rats not exposed to cold but prevented the stimulation of enzyme activity induced by repeated cold exposure. These results support the notion that the regulation of LPL is tissue specific.  相似文献   

8.
Free fatty acids (FFA) are important extracellular and intracellular signaling molecules and are thought to be involved in beta-adrenergic-induced remodeling of adipose tissue, which involves a transient inflammatory response followed by mitochondrial biogenesis and increased oxidative capacity. This work examined the role of hormone-sensitive lipase (HSL), a key enzyme of acylglycerol metabolism, in white adipose tissue (WAT) remodeling using genetic inactivation or pharmacological inhibition. Acute treatment with the beta(3)-adrenergic agonist CL-316,243 (CL) induced expression of inflammatory markers and caused extravasation of myeloid cells in WAT of wild-type (WT) mice. HSL-knockout (KO) mice had elevated inflammatory gene expression in the absence of stimulation, and acute injection of CL did not further recruit myeloid cells, nor did it further elevate inflammatory gene expression. Acute pharmacological inhibition of HSL with BAY 59-9435 (BAY) had no effect on inflammatory gene expression in WAT or in cultured 3T3-L1 adipocytes. However, BAY prevented induction of inflammatory cytokines by beta-adrenergic stimulation in WAT in vivo and in cultured 3T3-L1 adipocytes. Chronic CL treatment stimulated mitochondrial biogenesis, expanded oxidative capacity, and increased lipid droplet fragmentation in WT mice, and these effects were significantly impaired in HSL-KO mice. In contrast to HSL-KO mice, mice with defective signaling of Toll-like receptor 4, a putative FFA receptor, showed normal beta-adrenergic-induced remodeling of adipose tissue. Overall, results reveal the importance of HSL activity in WAT metabolic plasticity and inflammation.  相似文献   

9.
Fasted rats injected with actinomycin or fed glucose show increased lipoprotein lipase activity of epididymal adipose tissue. Data from the actinomycin-treated animals showed a direct correlation between the lipoprotein lipase activity and the uptake of lipoprotein triglyceride by the epididymal fat pad in vitro and in vivo. Data from the animals fed glucose confirmed these findings in vitro. These data strongly suggest that lipoprotein lipase plays a major role in triglyceride deposition in adipose tissue.  相似文献   

10.
Intracellular recording of white adipocytes was performed in an in vitro preparation. Resting potential, input resistance and membrane time constant averaged: -34 +/- 9 mV, 295 +/- 161 M omega, and 58 +/- 19 ms respectively (mean +/- SD, n = 32). Intracellular injection of positive and negative square current pulses elicited membrane voltage responses, characterized by a rectification of the voltage change evoked by positive pulses, and a slow return to baseline at the offset of hyperpolarizing pulses. The amplitude and duration of the slow return to resting potential was dependent on membrane potential, pulse duration, and extracellular K+ concentration. This response was depressed when external Ca2+ was replaced by Co2+, and by external application of 4-aminopyridine. These results indicate that white adipocytes can generate membrane voltage responses which may mostly be a consequence of the activity of ionic channels. The properties of the slow return to baseline suggest that it may be due to a transient K+ current.  相似文献   

11.
The lipoprotein lipase (clearing-factor lipase) activity of the white adipose tissue from rats aged between 1 and 145 days was determined. Five adipose-tissue sites (epididymal, uterine, subcutaneous, perirenal and intramuscular) together with serum concentrations of triacylglycerol, cholesterol and glucose were studied. The pattern of enzyme-activity change was remarkably similar in all the sites studied, although the growth of the tissues proceeded non-uniformly. After a peak of activity early in suckling, lipoprotein lipase activity fell to low values by 20 days of age. At weaning (21 days) the activity increased sharply and within 5 days high values were regained. The serum triacylglycerol and cholesterol concentrations were low at birth and reached peaks of concentration coincidentally with the minima of white-adipose-tissue lipoprotein lipase activities, seen late in suckling. The changes in enzyme activity were related to other metabolic changes in adipose tissue and with the known changes in plasma insulin concentrations occurring during development.  相似文献   

12.
13.
A comparison of the influence of simple and complex carbohydrate (CHO) consumption on adipose tissue- and skeletal muscle-lipoprotein lipase activity (AT-LPLA, SM-LPLA) was examined. Twenty male marathon runners were divided into two equal dietary groups: simple-CHO and complex-CHO. Half of the subjects in each group consumed either a low-CHO (15% energy [E] intake), or a mixed diet (50% CHO) for 3 days. Immediately following this dietary period, the subjects consumed a CHO-rich diet (70% E intake) predominant in simple-CHO or in complex-CHO for an additional 3 days. Thereafter, all subjects returned to a normal mixed diet. Skeletal muscle biopsies, adipose tissue aspirations, and venous blood samples were obtained prior to dietary manipulation (PRE), upon completion of the 6 day diet (POST I), and 2 weeks after returning to a normal diet (POST II). The samples were analysed for AT-LPLA, SM-LPLA, serum insulin, and free fatty acids (FFA), and blood glucose, and lactate. SM-LPLA fell 71% from PRE values of 0.39 +/- 0.30 mu mol.g-1.h-1 to POST I values of 0.11 +/- 0.09 mu mol.g-1.h-1 (means +/- SD) (p less than 0.05), after a complex-CHO diet. However, the simple-CHO diet did not alter SM-LPLA. AT-LPLA similarly decreased (p less than 0.05) after the complex-CHO diet, and no significant decrease was noted after the simple-CHO diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
After 16 h nocturnal deprivation of food, male Wistar rats were irradiated by a single whole body dose of 2.40 Gy X-rays. Both the irradiated and sham-irradiated (control) rats were pair-fed for the first six days after irradiation, but for the rest of the time they were fed ad libitum. Lipoprotein lipase activity (LPLA) in the adipose tissue fell between 24 and 48 h; LPLA in the heart fell at 24 h and 21 days and rose on the 14th days. The serum triacylglycerol concentration rose between 24 and 72 h. Comparison with the fed control group showed LPLA in adipose tissue to be reduced at 6 and 72 h and on the 28th day and raised between the 7th and the 14th day. In the heart it was raised at 1 h and between 72 h and the 14th day, it was reduced on the 21st day and rose on the 35th day. The triacylglycerol concentration was raised between 48 and 72 h and on the 28th day. Pair-feeding after non-lethal X-irradiation allowed more exact differentiation of the specific effect of ionizing radiation on LPLA in the adipose tissue and heart at the early post-irradiation intervals.  相似文献   

15.
The ability of insulin to increase both [14C]-glucose incorporation into fatty acids and pyruvate dehydrogenase activity in incubated rat epididymal adipose tissues was considerably lessened after adrenalectomy. Insulin antagonism of adrenaline-stimulated lipolysis in isolated fat cells was abolished after adrenalectomy. Percentage stimulation of lipolysis above basal by adrenaline was not appreciably altered by adrenalectomy.  相似文献   

16.
Changes in adipose-tissue lipoprotein lipase activity that are independent of protein synthesis were investigated in an incubation system in vitro. Under appropriate conditions at 25 degrees C a progressive increase in the enzyme activity occurs that is energy-dependent. Part of the enzyme is rapidly inactivated when the tissue is incubated with adrenaline or adrenaline plus theophylline. The mechanism of this inactivation appears to be distinct from, and to follow, the activation of the enzyme. A hypothesis is presented to account for the results in terms of an activation of the enzyme during obligatory post-translational processing and a catecholamine-regulated inactivation of the enzyme as an alternative to secretion from the adipocyte.  相似文献   

17.
Hormonal control of adipose tissue clearing factor lipase activity   总被引:8,自引:0,他引:8  
  相似文献   

18.
19.
Rapid assay for hormone-sensitive lipase activity of adipose tissue   总被引:1,自引:0,他引:1  
A highly specific and rapid assay for hormone-sensitive lipase activity of rat adipose tissue is described. The method employs emulsified 2,3-di-O-oleyl-[9,10-(3)H(2)]oleoyl glycerol as a substrate; it is very sensitive and is suitable for serial sampling.  相似文献   

20.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号