首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thin (0.5-1 μ) sections of plastic-embedded, OsO4-fixed tissues were attached to glass slides by heating to 70 C for 1 min. A saturated solution combining toluidine blue and malachite green was prepared in ethanol (8% of each dye) or water (4% of each dye). Methacrylate or epoxy sections were stained in the ethanol solution for 2-5 min. The water solution was more effective for some epoxy sections (10-80 min). Epoxy sections could be mordanted by 2% KMnO4, in acetone (1 min) before use of the aqueous dye, reducing staining time to 5-10 min and improving contrast. Aqueous basic fuchsin (4%) was used as the counter-stain in all cases; staining time varied from 1-30 min depending upon the embedding medium and desired effects, methacrylate sections requiring the least time. In the completed stain, nuclei were blue to violet; erythrocytes and mitochondria, green; collagen and elastic tissue, magenta; and much and cartilage, bright cherry red. Sections were coated with an acrylic resin spray and examined or photographed with an oil-immersion lens.  相似文献   

2.
A staining procedure is described for use with glycol methacrylate embedded tissue sections which does not stain the plastic embedment or remove the sections from the glass slides. The basic dye is celestine blue B. It is prepared by treating 1 g of the dye with 0.5 ml concentrated sulfuric acid. It is then dissolved with the following solution. Add 14 ml glycerine to 100 ml 2.5 percent ferric ammonium sulfate and warm the solution to 50 C. Finally adjust the pH to 0.8 to 0.9 The acid staining solution consists of 0.075 percent ponceau de xylidine and 0.025 percent acid fuchsin in 10 percent acetic acid. Slides containing the dried plastic sections are immersed in the celestine blue solution for five minutes and in the ponceau-fuchsin solution for ten minutes with an intervening water rinse. After a final wash, the sections are air dried and coverslipped. This staining procedure colors the tissues nearly the same as hematoxylin and eosin procedures.  相似文献   

3.
The staining schedule was developed for a study of the mycorrhizae of red pine, Pinus resinosa Ait. From 70% alcohol, sections are stained in a saturated solution of chlorazol black E in 70% alcohol, 10-30 min; free dye removed by washing in 95% alcohol; stained 18-24 hr in Pianese III-b; rinsed in 95% alcohol, acidified by the addition of 2 ml of saturated aqueous picric acid per 100 ml, 3-4 changes or until the last change is pale yellow or light green; and rinsing in 95% alcohol to remove the acid. If the acid fuchsin is too intense, a cautious differentiation with 95% alcohol containing 1-3% of a 0.1 N solution of NaOH is made. If too much chlorazol black is removed, the effect can be compensated by overstaining with this dye at the beginning of the process. Sections are dehydrated, cleared, and covered in the usual manner. This stain has applications to plant tissues generally, and is particularly effective for meristematic tissues. It shows details of cytoplasmic structures and gives sharp delineation of primary cell walls.  相似文献   

4.
To a 1.0% filtered aqueous solution of toluidin blue add drop by drop 4-5 ml of either a saturated aqueous solution of HgCl2 or of KI. Collect the resulting dark precipitate on a filter paper and wash it with numerous small quantities of distilled water applied to both inside and outside of the filter paper. Wash until the drippings are distinctly blue (equivalent to about a 0.05% dye solution). Remove the paper and its contents from the funnel and dry either at room temperature or at 37°C. When dry, the treated dye can be brushed off the paper and stored. To prepare a staining solution add a weighed amount (0.12 gm if derived from the HgCl2 treatment, or 0.3 gm if from KI) to 100 ml of distilled water. This insures a saturated solution in either case and gives a satisfactory stain with most sections in 10-30 min. Thionin and other members of the thiazine dyes also showed improvement in staining qualities after this treatment.  相似文献   

5.
A three-day old aldehyde fuchsin staining solution (Gomori, 1950) was precipitated in a separatory funnel by adding 50 ml. of chloroform and 200 ml. of distilled water to each 100 ml. of the staining solution. The mixture was shaken, allowed to settle and the precipitate-bearing layer filtered through paper. The precipitate was dried at 50°C, scraped from the paper and stored in a stoppered vial. To use, 0.5 g. of the dry stain was dissolved in 100 ml. of 70% ethanol containing 1 ml. of concentrated hydrochloric acid. In the dry form, the dye has retained its property of staining thyrotroph cells and neurosecretory substance in the hypophysis of the rat for several months.  相似文献   

6.
Nile red is a phenoxazone dye that fluoresces intensely, and in varying color, in organic solvents and hydrophobic lipids. However, the fluorescence is fully quenched in water. The dye acts, therefore, as a fluorescent hydrophobic probe. We utilized this novel property of nile red to develop a sensitive fluorescent histochemical stain for tissue lipids. Nile red was prepared by boiling Nile blue A under reflux for 2 hr in 0.5% H2SO4, and extracting the product into xylene. For staining, the purified dye is dissolved in 75% glycerol (1-5 micrograms/ml) and applied to frozen tissue sections. Tissue lipids then fluoresce yellow-gold to red, depending on their relative hydrophobicity. Using sections of liver and aorta from a cholesterol-fed rabbit, we assessed the value of Nile red as a stain for neutral lipids by comparing the staining pattern obtained with that produced by oil red O, a commonly used dye for tissue cholesteryl esters and triacylglycerols. In the cholesterol fatty liver, Nile red staining was comparable to that of oil red O. In contrast, Nile red staining of rabbit aortic atheroma revealed ubiquitous lipid deposits not observed with oil red O staining. These latter results suggest that Nile red can detect neutral lipid deposits, presumably unesterified cholesterol, not usually seen with oil red O or other traditional fat stains.  相似文献   

7.
A 1% solution of chlorazol fast pink B in 0.9% NaCl can be used like trypan blue to detect virus inclusions and proteinaceous entities in peelings from leaves or thin sections taken from living plant tissue. Like trypan blue, a solution of the pink dye causes somatic nuclei to swell and thus facilitates observation of their structure. The two dyes combine into a beautiful differential bicolored stain. Mix 5 ml of 0.5% trypan blue stock solution with 35 ml of 1% chlorazol pink B in 0.9% NaCl. Stain fresh tissue 1-2 minutes. The combination stain is superior to either dye alone for differentiating virus entities.  相似文献   

8.
Fresh tissue slices were fixed in 5% formalin containing 0.9% NaCl for 10-20 min and frozen sections therefrom floated for 3 hr at 37°C on an incubating mixture made as follows. Sodium pyrophosphate (Na4P2O7-12H2O), 1.088 gm was dissolved in 20-30 ml of distilled water and to this was added ferric chloride (FeCl3-6H2O), 0.61 gm dissolved in 10-15 ml of water. The precipitate was just dissolved by cautiously adding 5-10% aqueous Na2CO3 solution and the pH adjusted to 7.2 with 1N HCl. The volume was made up to 100 ml and 0.9 gm of NaCl added. Before use, 1 ml of 10% Mg(NO3) was added. After incubation, sections were washed 10-15 min in 0.9% NaCl, then mounted on glass slides and air-dried. When dry, the slides were immersed in 0.9% NaCl containing 0.2-0.5% ammonium sulfide for 2-3 min, then dehydrated rapidly through graded alcohols, cleared, and covered in balsam. Sites of pyrophosphatase activity stained in various shades of green. Acid pyrophosphatase also was histochemically demonstrated by the same principle, excepting that the substrate solution was adjusted to pH 3.7-4.0 with acetate buffer. The pattern of distribution of pyrophosphatase and glycerophosphatase was almost identical.  相似文献   

9.
Gomori's original aldehyde-fuchsin method has been modified by the combination of Halmi's counter stain with Gabe's preparation, consisting of basic fuchsin, 1 gm; boiling water, 200 ml; with HC1, 2 ml and paraldehyde, 2 ml added after cooling and filtering. The solution so made was allowed to ripen 3-4 days at room temperature, and the precipitate which formed was filtered off and dried at 55-60°C. The staining solution consisted of 0.5 gm of the dry precipitate dissolved in 100 ml of 70% alcohol. The staining follows original procedures except that it is very important to bring slides from water to 70% alcohol before placing them in the aldehyde-fuchsin solution and also to remove all excess staining solution by rinsing in 95% alcohol after staining. The staining solution is stable for at least 6 mo.  相似文献   

10.
A selective stain useful for the study of connective tissues is described. The stain demonstrates elastic and oxytalan fibers as well as fibrils in mucous connective tissues previously undescribed. Reticular fibers are not stained. The stain may be used on sections that have been fresh frozen or fixed in formalin or ethanol. Sections are deparaffinized, washed in absolute ethanol, oxidized in peracetic acid 30 min, washed in running water, stained in Taenzer-Unna orcein 15 min, 37°C, differentiated in 70% ethanol, washed in running water, stained in Lillie-Mayer alum hematoxylin 4 min, blued in running water, and counterstained 20 sec in a modified Halmi mixture of 100 ml distilled water, 0.2 gm light green SF, 1.0 gm orange G, 0.5 gm phosphotungstic acid and 1.0 ml glacial acetic acid. Sections are rinsed briefly in 0.2% acetic acid in 95% ethanol, dehydrated and mounted.  相似文献   

11.
The stain is applied routinely to tissues fixed in 10% buffered formalin (pH near 7.0) or in Bouin's fluid. Bring paraffin section to water as usual and mordant 72 hr in 5% CrCl3 dissolved in 5% acetic acid. Wash in water and in 70% alcohol and stain 6 hr. Formula of staining solution: new fuchsin, 1% in 70% alcohol, 100 ml; HCl, conc., 2 ml and paraldehyde, 2 ml, mixed together and added to the dye solution; let stand 24 hr before use. After staining, wash in running tap water 5-10 min, rinse in distilled water and counterstain if desired. Dehydration in alcohol, clearing and covering completes the process. When the paraldehyde is obtained from a freshly opened bottle, standardized staining times can be used and thus eliminate the necessity of differentiating individual slides. The granules of beta cells stained deep blue to purple and were demonstrated in the pancreatic islet of man, dog, mouse, frog, guinea pig and rabbit.  相似文献   

12.
Differential Staining of Aborted and Nonaborted Pollen   总被引:11,自引:0,他引:11  
A single staining solution was made by compounding it in the following order (dyes were from British Drug Houses): ethanol, 10 ml; 1% malachite green in 95% ethanol, 1 ml; distilled water, 50 ml; glycerol 25 ml; phenol, 5 gm; chloral hydrate, 5 gm; acid fuchsin 1% in water, 5 ml; orange G, 1% in water 0.5 ml; and glacial acetic acid, 1-4 ml. For best results in differentiation to give green pollen walls and red protoplasm, the staining solution should be acidified with glacial acetic acid. The amount of acid to be added depends upon thickness of the pollen walls: for very thin-walled pollen, 1 ml; for moderately thin walls, 2 ml; and for thick-walled or spiny-walled pollen, 3 ml of acid. For pollen inside non-dehiscent anthers, 4 ml of acid should be used. Staining is hastened by flaming the slide (for loose thin-walled pollen) or by immersing thick-walled pollen or anthers for 24-48 hr at 50 C. In the typical stain, aborted pollen grains are green; nonaborted, red. The method is useful for pollen inside nondehiscent anthers if these are small and not too deeply coloured naturally. The stain is very durable, especially if the coverslips are sealed with param wax. The staining solution will keep well for about a month. It is useful both for angiosperms and gymnosperm microgametes.  相似文献   

13.
A versatile stain has been developed for demonstrating pollen, fungal hyphae and spores, bacteria and yeasts. The mixture is made by compounding in the following order: ethanol, 20 ml; 1% malachite green in 95% ethanol, 2 ml; distilled water, 50 ml; glycerol, 40 ml; acid fuchsin 1% in distilled water, 10 ml; phenol, 5 g and lactic acid, 1-6 ml. A solution has also been formulated to destain overstained pollen mounts. Ideally, aborted pollen grains are stained green and nonaborted ones crimson red. Fungal hyphae and spores take a bluish purple color and host tissues green. Fungi, bacteria and yeasts are stained purple to red. The concentration of lactic acid in the stain mixture plays an important role in the differential staining of pollen. For staining fungi, bacteria and yeasts, the stain has to be acidic, but its concentration is not critical except for bacteria. In the case of pollen, staining can be done in a drop of stain on a slide or in a few drops of stain in a vial. Pollen stained in the vial can be used immediately or stored for later use. Staining is hastened by lightly flaming the slides or by storing at 55±2 C for 24 hr. Bacteria and yeasts are fixed on the slide in the usual manner and then stained. The stock solution is durable, the staining mixture is very stable and the color of the mounted specimens does not fade on prolonged storage. Slides are semipermanent and it is not necessary to ring the coverslip provided 1-2 drops of stain are added if air bubbles appear below the coverslip. The use of differentially stained pollen mounts in image analyzers for automatic counting and recording of aborted and nonaborted pollen is also discussed.  相似文献   

14.
Tissues from representative mammals, amphibia and invertebrates were fixed for 5-24 hr in either an aqueous solution of 8% p-toluene sulfonic acid (PTSA) or in 10% formalin to which 5 gm PTSA/100 ml had been added, and processed through embedding in polyethylene glycol 400 distearate in the usual manner. Sections cut at 4-6 μ were floated on 0.2% gelatin containing 1.25% formalin, and spread and dried on slides at a temperature not exceeding 25 C. Wax was removed with xylene, and the sections brought to water through ethanol as usual. The working staining solution was made from three stock solutions: A. Chlorantine fast blue 2RLL, 0.5%; B. Cibacron turquoise blue G-E, 0.5%; C. Procion red M-P, 0.5%—each of which was dissolved in 98.5 ml of distilled water to which 0.5 ml of glacial acetic acid and 0.5 ml of propylene glycol monophenyl ether (a fungicide) had been added. For use, the three solutions were mixed in the proportions: A, 3; B, 4; and C, 3 volumes. Staining time was uncritical, 10-30 min usually sufficing for 6 μ, sections. The chief feature of the staining is the differentiation of oxygenated and nonoxygenated red blood corpuscles, in reds and blues respectively. Connective tissue stained blue or blue-green and mucin, green. Nuclei and cytoplasm stain according to their condition at the time of fixation. The mixed stain keeps well, remaining active after 2 yr of storage.  相似文献   

15.
Some plant extracts can be used in biology and medicine to reveal or identify cellular components and tissues. We investigated the effects of time and concentration on staining of histological sections of rat testes by an acidified extract of Hibiscus sabdariffa. An ethanolic extract of H. sabdariffa was diluted using 1% acetic acid in 70% ethanol to stain histological sections of testes at concentrations of 0.2, 0.1 and 0.05 g/ml for 5, 10, 15, 30, 45 and 60 min. The sections of testes were stained deep red. The staining efficiency of H. sabdariffa was greater at a high concentration and required less time to achieve optimal staining. H. sabdariffa is a strongly basic dye that can be used for various diagnostic purposes. Staining time and concentration must be considered to achieve optimal results.  相似文献   

16.
Ethidium bromide: a nucleic acid stain for tissue section   总被引:3,自引:0,他引:3  
The phenanthridinium dye, ethidium bromide (EB), selectively intercalates into double-stranded regions of nucleic acids with a large and specific increase in fluorescence. When used for the staining of fixed tissue sections, the dye stains cellular nuclei with excellent resolution of microscopic detail. In some fixed tissues, particularly pancreatic acini, cytoplasm stains intensely and this staining can be abolished by digestion with trypsin and ribonuclease. The orange fluorescence of EB can be easily distinguished from the green fluorescence of fluorescein and EB is thus an excellent counterstain for immunofluorescence. Ethidium bromide is a useful and practical stain for the fluorescence microscopy of tissue sections and, in combination with enzymatic digestion of RNA, provides a simple way to differentially localize DNA and RNA.  相似文献   

17.
A previous treatment with 10% HC1 in tetrahydrofuran for 2-3 min at 37° C hydrolyses DNA while substantially preserving RNA in formol-fixed paraffin sections. If this treatment is followed by dyeing with basic fuchsin-thiazine or oxazine mixtures, the basic fuchsin stains DNA, the blue dye cytoplasmic RNA, though nucleolar RNA is not well preserved. A specimen sequence is to treat the hydrolysed section with a mixture of 1% aqueous trimethylthionin (Chroma), 15 ml; 0.1% basic fuchsin (G. T. Gurr), 4 ml; and glacial acetic acid, 1 ml. Stain for 15-30 min, dehydrate in acetone, then pass sections through xylene to polystyrene. The specificity of this stain for cytoplasmic RNA is sharper than that of methyl green-pyronin; hence the technic given can be a useful addition to the standard Unna-Pappenheim procedure.  相似文献   

18.
Dyes used in the 3 methods recommended are: I, thionin and acridine orange (T-AO); II, Janus green and Darrow red (JG-DR); III, methyl green and methyl violet (MG-MV). The first 2 methods were two-solution stains, applied in sequence; the third, required only one solution since methyl violet is present in commercial methyl green. Staining solution and timing was as follows: Method I. 0.1% thionin in a 45% ethanolic solution of 0.01 N NaOH, 5 min at 70 C; rinsing in water and followed by 1 min in a 1% aqueous solution of acridine orange made up in 0.02 N NaOH, also at 70 C, then washed, and dried on slides. Method II. 0.5% Janus green in aqueous 0.05 N NaOH, 5 min at 70 C; rinsing in water then into 0.5% Darrow red in 0.05 N NaOH (aq.), 2 min at 70 C., washing, and drying on slides. Method III. 1% methyl green (commercial, unpurified) in 1% aqueous borax for 15-20 min at 20-25 C, washing and attaching to slides. All staining was performed by floating the sections on the staining solutions, all drying at 70 C, and mounting in a resinous medium. T-AO gave blue to violet cytoplasmic structures, darker nuclei which contrasted strongly with yellow connective tissue and the secretion of goblet cells. JG-DR resembled a hematoxylineosin stain, but by shortening the staining time in DR to 0.5-1 min, collagenous and elastic tissue retained more of the green dye. MG-MV gave dark green nuclei in light green cytoplasm, with collagenous and elastic tissues in blue to violet. As with most methods for staining ultrathin sections, thicknesses of less than 1 μ required longer staining times.  相似文献   

19.
A dye, which is probably a cationic chelate, has been separated from a gallocyanin-chrome alum staining solution and prepared in the dry form. This dye is apparently the major staining compound. To prepare the chelate or dye, dissolve 150 mg of gallocyanin and 15 gm of chrome alum in 100 ml of distilled water and boil for 10-20 min, cool, filter, wash the precipitate with sufficient distilled water to restore the volume of the filtrate to 100 ml, then add concentrated NH4OH until the pH is raised to 8-8.5. Filter, with suction, through a medium porosity fritted glass funnel. Wash with 100-200 ml of anhydrous ethyl ether and air dry the precipitate. This ratio of chrome alum to gallocyanin and the 10-20 min boiling time are optimal for preparation of the staining solution, which may be used either for staining or for separation of the chelate in its dry form. From the dried chelate, the staining solution is prepared as a 3% solution in1 N H2SO4 and a staining time of 16-24 hr is required. No differentiation is needed; the stain is self-limiting.  相似文献   

20.
For a detailed study of the developing chick retina a technique has been developed using glycol methacrylate embedding and a hematoxylin toluidine blue-phloxinate stain. After removal of the vitreous body, one half-segment of the eye is dehydrated through graded ethyl alcohols to 95%, infiltrated and embedded in glycol methacrylate, and sectioned at 2 μm. The sections are stained in alum hematoxylin and then in a mixture containing toluidine blue-phloxinate from a stock solution of the dye that has matured for 2-3 weeks. Differentiation is not required and there is only slight staining of the plastic matrix. The quality and clarity of the sections contrasts markedly with that of similarly stained 5 μm paraffin wax sections of the retina. This technique has also been applied to skin, spinal cord, dorsal root ganglia, pancreas and small intestine. The stained sections from these tissues have proved very useful in revealing structural components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号