首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Na-K adenosinetriphosphatase (ATPase) on relaxation induced by isoproterenol, prostaglandin E2, sodium nitroprusside, and forskolin, a specific stimulant of adenylate cyclase, was investigated in canine tracheal smooth muscle strips. Relaxation in response to isoproterenol, prostaglandin E2, and forskolin was significantly decreased after inhibition of the Na-K ATPase by ouabain or a potassium-free medium, but relaxation to sodium nitroprusside was not affected. Relaxation to isoproterenol was greater in muscles contracted by 5-hydroxytryptamine than in those contracted by acetylcholine. The stimulation of Na-K ATPase activity with potassium also caused differences in relaxation between tissues contracted with 5-hydroxytryptamine or acetylcholine. Relaxation caused by isoproterenol by activation of the Na-K-ATPase was also decreased by the Ca2+-channel antagonists, verapamil and diltiazem. The results suggest 1) Na-K ATPase activity modulates relaxation caused by isoproterenol, prostaglandin E2, and forskolin in canine tracheal smooth muscle, 2) isoproterenol or activation of the Na-K ATPase may cause relaxation partly by reducing Ca2+ influx through potential-dependent Ca2+ channels, and 3) the differences in the inhibitory effects of isoproterenol and Na-K ATPase activity on muscles contracted by acetylcholine and 5-hydroxytryptamine could be due to differences between these contractile agents in their dependence on extracellular Ca2+ for activation.  相似文献   

2.
Na(+)-K+ ATPase activity of the canine tracheal smooth muscle membrane is responsible for the electrogenic pumping of Na+ and K+ ions. It has been shown that this activity results in muscle relaxation. Based on the results of the current study, we suggest that prolonged electrical stimulation induces increased Na(+)-K+ ATPase activity in isolated tracheal smooth muscle. Tracheal smooth muscle pretreated with prolonged electrical stimulation developed graded mechanical activity when subsequently treated with histamine, serotonin, acetylcholine, or 80 mM K+. This increased isometric tension was interrupted by rhythmic activity, which was elicited by histamine or serotonin but not by acetylcholine or 80 mM K+ stimulation. The spontaneous phasic activity was not inhibited by atropine or propranolol but was totally inhibited by 10(-6) M ouabain. These results suggested that the relaxation phase of rhythmic contraction in response to histamine and serotonin stimulation could be the result of stimulated Na(+)-K+ ATPase activity.  相似文献   

3.
Raising extracellular K+ concentration ([K+](o)) around mesenteric resistance arteries reverses depolarization and contraction to phenylephrine. As smooth muscle depolarizes and intracellular Ca(2+) and tension increase, this effect of K+ is suppressed, whereas efflux of cellular K+ through Ca(2+)-activated K+ (K(Ca)) channels is increased. We investigated whether K+ efflux through K(Ca) suppresses the action of exogenous K+ and whether it prestimulates smooth muscle Na(+)-K(+)-ATPase. Under isometric conditions, 10.8 mM [K+](o) had no effect on arteries contracted >10 mN, unless 100 nM iberiotoxin (IbTX), 100 nM charybdotoxin (ChTX), and/or 50 nM apamin were present. Simultaneous measurements of membrane potential and tension showed that phenylephrine depolarized and contracted arteries to -32.2 +/- 2.3 mV and 13.8 +/- 1.6 mN (n = 5) after blockade of K(Ca), but 10.8 mM K+ reversed fully the responses (107.6 +/- 8.6 and 98.8 +/- 0.6%, respectively). Under isobaric conditions and preconstriction with phenylephrine, 10.7 mM [K+](o) reversed contraction at both 50 mmHg (77.0 +/- 8.5%, n = 9) and 80 mmHg (83.7 +/- 5.5%, n = 5). However, in four additional vessels at 80 mmHg, raising K+ failed to reverse contraction unless ChTX was present. Increases in isometric and decreases in isobaric tension with phenylephrine were augmented by either ChTX or ouabain (100 microM), whereas neither inhibitor altered tension under resting conditions. Inhibition of cellular K+ efflux facilitates hyperpolarization and relaxation to exogenous K+, possibly by indirectly reducing the background activation of Na(+)-K(+)-ATPase.  相似文献   

4.
The interaction of contractile agonists on the relaxation elicited with isoproterenol (ISO) was studied in 112 tracheal smooth muscle (TSM) strips from 20 dogs in vitro. Strips were contracted to the same active target tension (TT) with acetylcholine (ACh), histamine (HIS), serotonin (5-hydroxytryptamine, 5-HT), potassium chloride (KCl), or the combinations of ACh + HIS, ACh + 5-HT, HIS + KCl, HIS + 5-HT (50% TT from each agonist). Although a less potent agonist, adding HIS to cause 50% of the TT reduced the concentration of ACh to elicit the remaining 50% TT and substantially altered relaxation by ISO compared with HIS alone [concentration required to achieve 50% relaxation (RC50) = 9.2 +/- 2.4 X 10(-8) vs. 9.0 +/- 4.4 X 10(-9) M to HIS alone; P less than 0.003]. Relaxation for TSM strips contracted with ACh + HIS was comparable to that elicited from the same TT with ACh alone, although concentrations required in combination were lower than for either agonist alone. Trachealis strips contracted equivalently with KCl + HIS also had augmented contraction and attenuated relaxation (RC50 = 3.7 +/- 0.8 X 10(-8) M; P less than 0.015 vs. HIS alone). However, combinations of 5-HT + ACh and 5-HT + HIS did not alter relaxation to ISO from that elicited by the weaker agonist alone. We demonstrate that TSM relaxation depends on the combination of agonists eliciting contraction and may be inhibited substantially by interactions among contractile agonists.  相似文献   

5.
Canine basilar artery rings precontracted with 5-hydroxytryptamine (0.1-0.5 microM) relaxed in the presence of acetylcholine (25-100 microM), sodium nitroprusside (0.1 microM), or stimulation of the electrogenic sodium pump by restoration of extracellular K+ (4.5 mM) after K(+)-deprivation. Acetylcholine-induced relaxation is believed to be caused by the release of endothelium-derived relaxing factor (EDRF) and is prevented by mechanical removal of the endothelium, while relaxations induced by sodium nitroprusside or restarting of the sodium pump are endothelium-independent. Acetylcholine-induced relaxation was selectively blocked by pretreatment of the tissue with the nonselective K+ conductance inhibitors, 4-aminopyridine (4-AP, 3 mM), Ba2+ (1 mM), and tetraethylammonium (20 mM), 4-AP also blocked ACh-mediated relaxation in muscles contracted with elevated external K+. Relaxation of 5-hydroxytryptamine-induced contraction by sodium nitroprusside, or by addition of K+ to K(+)-deprived muscle, was not affected by 4-AP. Relaxation of basilar artery with acidified sodium nitrite solution (containing nitric oxide) was reduced by 4-AP. These results suggest that 4-AP and possibly Ba2+ inhibit acetylcholine-induced endothelium-dependent relaxation by inhibition of the action of EDRF on the smooth muscle rather than through inhibition of release of EDRF. The increase in K+ conductance involved in acetylcholine-induced relaxation is not due to ATP-inhibited K+ channels, as it is not blocked by glyburide (10(-6) M). Endothelium-derived relaxant factor(s) may relax smooth muscle by mode(s) of action different from that of sodium nitroprusside or by hyperpolarization due to the electrogenic sodium pumping.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.  相似文献   

7.
Smooth muscle membrane potential and tension in rat isolated small mesenteric arteries (inner diameter 100-200 microm) were measured simultaneously to investigate whether the intensity of smooth muscle stimulation and the endothelium influence responses to exogenous K+. Variable smooth muscle depolarization and contraction were stimulated by titration with 0.1-10 microM phenylephrine. Raising external K+ to 10.8 mM evoked correlated, sustained hyperpolarization and relaxation, both of which were inhibited as the smooth muscle depolarized and contracted to around -38 mV and 10 mN, respectively. At these higher levels of stimulation, raising the K+ concentration to 13.8 mM still hyperpolarized and relaxed the smooth muscle. Relaxation to endothelium-derived hyperpolarizing factor, released by ACh, was not altered by the level of stimulation. In endothelium-denuded arteries, the concentration-relaxation curve to K+ was shifted to the right but was not depressed. In denuded arteries, relaxation to K+ was unaffected by the extent of prior stimulation and was blocked with 0.1 mM ouabain but not with 30 microM Ba2+. The ability of K+ to stimulate simultaneous hyperpolarization and relaxation in the mesenteric artery is consistent with a role as an endothelium-derived hyperpolarizing factor activating inwardly rectifying K+ channels on the endothelium and Na+-K+-ATPase on the smooth muscle cells.  相似文献   

8.
It is unclear whether muscle activity reduces or increases Na(+)-K(+)-ATPase maximal in vitro activity in rat skeletal muscle, and it is not known whether muscle activity changes the Na(+)-K(+)-ATPase ion affinity. The present study uses quantification of ATP hydrolysis to characterize muscle fiber type-specific changes in Na(+)-K(+)-ATPase activity in sarcolemmal membranes and in total membranes obtained from control rats and after 30 min of treadmill running. ATPase activity was measured at Na(+) concentrations of 0-80 mM and K(+) concentrations of 0-10 mM. K(m) and V(max) values were obtained from a Hill plot. K(m) for Na(+) was higher (lower affinity) in total membranes of glycolytic muscle (extensor digitorum longus and white vastus lateralis), when compared with oxidative muscle (red gastrocnemius and soleus). Treadmill running induced a significant decrease in K(m) for Na(+) in total membranes of glycolytic muscle, which abolished the fiber-type difference in Na(+) affinity. K(m) for K(+) (in the presence of Na(+)) was not influenced by running. Running only increased the maximal in vitro activity (V(max)) in total membranes from soleus, whereas V(max) remained constant in the three other muscles tested. In conclusion, muscle activity induces fiber type-specific changes both in Na(+) affinity and maximal in vitro activity of the Na(+)-K(+)-ATPase. The underlying mechanisms may involve translocation of subunits and increased association between PLM units and the alphabeta complex. The changes in Na(+)-K(+)-ATPase ion affinity are expected to influence muscle ion balance during muscle contraction.  相似文献   

9.
Acetylcholine (10(-7)-10(-2) M) enhanced the Na+, K+-ATPase activity in sarcolemmal vesicles from myocardium and intestinal smooth muscle. The stimulation of the enzyme from canine ventricles reaches 150% and was less pronounced (10-20%) in the case of frog myocardium and canine ileal muscles. The activating action of the neurotransmitter was simulated by gramicidin D (1-5 microM), but not by valinomycin 1-5 microM), blocked both by ouabain (200 microM) and atropine (0.1 microM), a muscarinic cholinergic antagonist. The activating action disappeared after treatment of membranes with alamethicin, a pore-producing antibiotic (0.8 mg/mg of protein). It is suggested that an increase in the Na+, K+-ATPase activity caused by acetylcholine is induced by Na+ which permeate the sarcolemmal vesicles through the ionic channel coupled with muscarinic acetylcholine receptor.  相似文献   

10.
The effect of Na+-K+-ATPase inhibitor ouabain on the resting membrane potential (Vm) was studied by glass microelectrodes in isolated somatic longitudinal muscles of the earthworm Lumbricus terrestris and compared with frog sartorius muscle. In earthworm muscle, Vm was -49 mV (inside negative) in a reference external solution with 4 mmol/l K+. The electrogenic participation of Na+-K+-ATPase was absent in solutions with very low concentrations of 0.01 mmol/l K+, higher in 4 and 8 mmol/l K+ (4-5 mV) and maximal (13 mV) in solutions containing 12 mmol/l K+ where Vm was -46 mV in the absence and -33 mV in the presence of 1 x 10(4) M ouabain. The electrogenic participation of Na+-K+-ATPase was much smaller in m. sartorius of the frog Rana temporaria bathed in 8 and 12 mmol/l K+. The results indicate that the Na+-K+-ATPase is an important electrogenic factor in earthworm longitudinal muscle fibres and that its contribution to Vm depends directly on the concentration of K+ in the bathing solution.  相似文献   

11.
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K(+) efflux and Na(+) and Cl(-) influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K(+) and Na(+) concentrations. Muscle interstitial K(+) concentration may increase 1- to 2-fold to 11-13 mM and intracellular K(+) concentration fall by 1.3- to 1.7-fold; interstitial Na(+) concentration may decline by 10 mM and intracellular Na(+) concentration rise by 1.5- to 2.0-fold. Muscle Cl(-) concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl(-) concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na(+)-K(+)-ATPase activity during exercise stabilizes Na(+) and K(+) concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na(+)-K(+) pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.  相似文献   

12.
Experiments were conducted in canine bronchi to determine whether the effect of epithelium removal on relaxations was affected by the contractile agent used to induce active force and the degree of contraction. Pairs of fourth-order bronchi with and without epithelium were suspended in organ chambers in physiological salt solution (95% O2-5% CO2, 37 degrees C). The bronchi were contracted to the concentration of acetylcholine or 5-hydroxytryptamine that resulted in a contraction that was 40 or 80% of the response to 10(-4) M of the agonist (ED40 or ED80). Epithelium removal reduced relaxations to isoproterenol and sodium nitroprusside during contraction to the ED80 but not the ED40 of acetylcholine. Responses to forskolin were not affected. Bronchi were significantly more sensitive to relaxing agonists in the presence of 5-hydroxytryptamine; there was no effect on epithelium removal or level of contraction. Thus 1) the influence of epithelium on bronchial relaxation is greatest during high degrees of cholinergic tone and 2) experimental conditions influence the effect of epithelium removal on relaxation.  相似文献   

13.
《Life sciences》1995,57(12):1163-1173
To evaluate the regulatory action of protein kinase C (PKC) on airway β-adrenergic function, the relaxant effects of isoproterenol (ISO) and 8 bromo-cyclic AMP (BrcAMP) were examined in tracheal smooth muscle (TSM) segments half-maximally contracted with acetylcholine in the absence (control) and presence of PKC activation with the phorbol ester, 12-deoxyphorbol 13-isobutyrate (DPS). Relative to control tissues, TSM treated with 0.1μM DPB depicted significantly enhanced maximal relaxation and sensitivity to ISO but not to BrcAMP. The enhancing effect of DPB on ISO responsiveness was completely inhibited in the presence of the PKC antagonist H-7. Inhibition of the Na+-K+ pump with either ouabain or K+-free buffer diminished the TSM relaxant response to ISO but not to BrcAMP. Inhibition of the Na+-K+ pump also ablated the DPB-induced potentiation of β-adrenoceptor responsiveness. Collectively, these data demonstrate that: 1) PKC activation enhances TSM relaxant responsiveness to β-adrenoceptor stimulation; 2) inhibition of the airway Na+-K+ pump markedly blunts the relaxant response to β-adrenoceptor stimulation; and 3) inhibition of the Na+-K+ pump abolishes the above potentiating effect of DPB on β-adrenoceptor-mediated relaxation of rabbit TSM. Thus, the above findings provide new evidence that PKC activation enhances the airway relaxant response to β-adrenoceptor stimulation, and that the latter effect is dependent on potentiated stimulation of the airway electrogenic Na+-K+ pump.  相似文献   

14.
Concentration-response curves for norepinephrine, acetylcholine, and 5-hydroxytryptamine were obtained in vitro alone and after precontraction with histamine, 5-hydroxytryptamine, or acetylcholine. Responses obtained to each agonist after precontraction were greater than responses to the agonist alone after subtraction of the force due to the precontracting stimulus. Augmentation of responses after precontraction was the greatest for norepinephrine, less for 5-hydroxytryptamine, and least for acetylcholine. Verapamil had no significant effect on the augmentation of responses to either 5-hydroxytryptamine or acetylcholine caused by precontraction. When the efficacy of acetylcholine was decreased by receptor alkylation with phenoxybenzamine, the augmentation of responses to acetylcholine caused by precontraction with histamine was significantly enhanced. Differences in the magnitude of the effect of precontraction on responses to different agonists may reflect differences in their efficiency of stimulus-response coupling in canine tracheal smooth muscle, or they may result from an increased expression of distinct receptors or receptor-mediated effects uncovered by the facilitory stimuli.  相似文献   

15.
Nitrovasodilators-sodium nitroprusside (SNP; 10(-9)-10(-4) M) and 3-morpholino-sydnonimine (SIN-1; 10(-9)-10(-4) M) produced concentration-dependent relaxation of the fourth generation sheep pulmonary artery, preconstricted with 5-hydroxytryptamine (1 microM). Oxidizing agents [oxidized glutathione (GSSG, 1 mM) and CuSO4 (5 and 20 microM)] and reducing agents [dithiothreitol (DTT, 0.1 mM), ascorbic acid (1 mM) and reduced glutathione (GSH, 1 mM)] caused opposite effects on nitric oxide (NO)-induced vasodilation in the artery. Ascorbic acid and GSH potentiated the NO responses, while GSSG and CuSO4 inhibited relaxation caused by the nitrovasodilators. DTT, however, reduced the relaxant potency and efficacy of SNP and SIN-1. Pretreatment of the pulmonary artery strips with DTT (0.1 mM) inhibited SNP (10 microM)-induced Na(+)-K(+)-ATPase activity, while ascorbic acid (1 mM) and GSH (1 mM) had no effect either on basal or SNP (10 microM)-stimulated 86Rb uptake, an index of Na(+)-K(+)-ATPase activity, in ovine pulmonary artery. The results suggest that reducing agents like ascorbic acid may have beneficial effect in improving the vascular function under oxidative stress.  相似文献   

16.
AIMS: Although 5-hydroxytryptamine (5-HT) contracts airway smooth muscle in many mammalian species, in guinea pig and human airways 5-HT causes a contraction followed by relaxation. This study explored potential mechanisms involved in the relaxation induced by 5-HT. MAIN METHODS: Using organ baths, patch clamp, and intracellular Ca(2+) measurement techniques, the effect of 5-HT on guinea pig airway smooth muscle was studied. KEY FINDINGS: A wide range of 5-HT concentrations caused a biphasic response of tracheal rings. Response to 32 muM 5-HT was notably reduced by either tropisetron or methiothepin, and almost abolished by their combination. Incubation with 10 nM ketanserin significantly prevented the relaxing phase. Likewise, incubation with 100 nM charybdotoxin or 320 nM iberiotoxin and at less extent with 10 muM ouabain caused a significant reduction of the relaxing phase induced by 5-HT. Propranolol, L-NAME and 5-HT(1A), 5-HT(1B)/5-HT(1D) and 5-HT(2B) receptors antagonist did not modify this relaxation. Tracheas from sensitized animals displayed reduced relaxation as compared with controls. In tracheas precontracted with histamine, a concentration response curve to 5-HT (32, 100 and 320 muM) induced relaxation and this effect was abolished by charybdotoxin, iberiotoxin or ketanserin. In single myocytes, 5-HT in the presence of 3 mM 4-AP notably increased the K(+) currents (I(K(Ca))), and they were completely abolished by charybdotoxin, iberiotoxin or ketanserin. SIGNIFICANCE: During the relaxation induced by 5-HT two major mechanisms seem to be involved: stimulation of the Na(+)/K(+)-ATPase pump, and increasing activity of the high-conductance Ca(2+)-activated K(+) channels, probably via 5-HT(2A) receptors.  相似文献   

17.
The aim of the present experiments was to study the effects of the neurotransmitters acetylcholine, noradrenaline, 5-hydroxytryptamine, and dopamine on the Na+,K+-ATPase of rat brain synaptosomal fractions. It is shown that dopamine at low concentrations specifically inhibits the Na+,K+-ATPase of synaptic membranes from the brain regions rich in dopaminergic endings, but has no effect on the synaptosomal Na+,K+-ATPase from the other parts of brain. Acetylcholine and noradrenaline have similar specific effects on Na+,K+-ATPase from cholinergic and adrenergic synaptosomes. The Na+,K+-ATPase of synaptic membranes from the different brain regions, characterised by different distributions of cholinergic, adrenergic, and 5-hydroxytryptaminergic endings, show different reactions with neurotransmitters. These data indicate a functional significance of the effects of the neurotransmitters on the synaptosomal Na+,K+-ATPase.  相似文献   

18.
Neurotransmitters in the intestine of the Atlantic cod, Gadus morhua   总被引:1,自引:0,他引:1  
The effects of the putative neurotransmitters acetylcholine, adrenaline, adenosine, ATP, bombesin, 5-hydroxytryptamine, met-enkephalin, neurotensin, somatostatin, substance P and VIP have been investigated in the perfused intestine of the cod, Gadus morhua. The presence and distribution of the different types of nerves was investigated with immunohistochemistry and Falck-Hillarp fluorescence histochemistry. A spontaneous rhythmic activity of the perfused preparations usually occurred within a few minutes from the start of the experiment. This activity was diminished or abolished by addition of atropine, methysergide or tetrodotoxin to the perfusion fluid. Acetylcholine, 5-hydroxytryptamine or substance P caused a contraction of the intestinal wall. The response to acetylcholine was blocked by atropine but not by tetrodotoxin, while the response to 5-hydroxytryptamine was blocked by methysergide and usually also by tetrodotoxin. This indicates that the effect of acetylcholine is direct on the muscle cells, while the effect of 5-hydroxytryptamine may be at least partly via a second neuron. All adrenergic agonists (adrenaline, isoprenaline and phenylephrine) had a dominating inhibitory effect on the intestine. Experiments with antagonists showed that the inhibition is due to stimulation of both alpha-adrenoceptors and beta-adrenoceptors. ATP, adenosine and somatostatin also caused a relaxation of the intestinal wall, often followed by a contraction. Met-enkephalin produced variable responses, either a relaxation, a contraction or both. Bombesin caused a weak inhibition, if anything. Neurotensin and VIP did not visibly affect the intestinal motility. 5-HT-, substance P- and VIP-like immunoreactivity and catecholamine fluorescence were observed in the myenteric plexus, submucosa and muscle layers in all parts of the intestine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The present study reports a discrepancy between the effects of vanadate on the membrane Na+-K+-ATPase and the Na+/K+ pump of the skeletal muscle. Vanadate in concentration 4 X 10(-6) mol/l which is necessary to block the enzyme Na+-K+-ATPase activity of membrane fractions failed to inhibit the electrogenic Na+/K+ pump of intact muscle cells. The effect of vanadate on the electrophysiological parameters of the muscle fibre membrane required much higher vanadate levels, but again, Na+/K+ pump was still active. Vanadate in concentrations 4 X 10(-4) and 4 X 10(-5) mol/l depolarized the membrane potential and decreased the membrane resistance [apparently in consequence of enhanced passive membrane permeability for Na+ ions]. Action potentials and the electrical excitability of the muscle fibre membrane were reduced by these vanadate concentrations.  相似文献   

20.
To obtain evidence in the airways that catecholamines inhibit cholinergic neurotransmission, we recorded transverse tension in the posterior wall of an upper tracheal segment in anesthetized cats and compared the inhibitory effect of stimulating cervical sympathetic nerves when segment contraction was evoked by endogenous acetylcholine (vagal tone) with the effect when contraction was evoked by exogenous acetylcholine applied directly to the mucosal surface of the tracheal segment (ACh tone). We found that sympathetic stimulation abolished all contraction evoked by vagal tone but reduced ACh tone by only one-half. In a second group of cats we compared the inhibitory effects of sympathetic stimulation and intravenous isoproterenol during vagal and ACh tone and also during tone evoked by exogenous 5-hydroxytryptamine (5-HT tone). Sympathetic stimulation or isoproterenol injection abolished all vagal and 5-HT tone but again reduced ACh tone by only one-half. Our results suggest that catecholamines released from sympathetic nerves or injected into the circulation completely inhibit vagal tone. This inhibition may be partially responsible for inducing relaxation in airway smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号