共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Different complexes are formed on the 3'' end of histone mRNA with nuclear and polyribosomal proteins. 总被引:7,自引:7,他引:7 下载免费PDF全文
Specific protein-RNA complexes are formed by incubating a synthetic histone mRNA 3' end (a 30 nucleotide stem-loop structure) RNA with extracts of either nuclei or polyribosomes. The complex formed between the stem-loop and nuclear proteins has a lower electrophoretic mobility than the complex formed between the stem-loop and polyribosomal proteins. Binding of the synthetic 3' end by both polyribosomal and nuclear proteins is abolished when two of the conserved uridine residues in the loop are replaced with adenosines. UV crosslinking of the protein complexes to the synthetic RNA resulted in transferring radiolabel to similar sized proteins, 50 kD, in both the nuclear and polyribosomal extracts. 相似文献
3.
Point mutations in the stem-loop at the 3'' end of mouse histone mRNA reduce expression by reducing the efficiency of 3'' end formation. 总被引:10,自引:2,他引:10 下载免费PDF全文
N B Pandey A S Williams J H Sun V D Brown U Bond W F Marzluff 《Molecular and cellular biology》1994,14(3):1709-1720
Mammalian histone mRNAs end in a highly conserved stem-loop structure, with a six-base stem and a four-base loop. We have examined the effect of mutating the stem-loop on the expression of the histone mRNA in vivo by introducing the mutated histone genes into CHO cells by stable transfection. Point mutations have been introduced into the loop sequence and into the UA base pair at the top of the stem. Changing either the first or the third base of the conserved UYUN sequence in the loop to a purine greatly reduced expression, while changing both U's to purines abolished expression. A number of alterations in the stem sequence, including reversing the stem sequence, reversing the two base pairs at the base of the stem, or destroying the UA base pair at the top of the stem, also abolished expression. Changing the UA base pair to a CG or a UG base pair also reduced expression. The loss of expression is due to inefficient processing of the pre-mRNA, as judged by the efficiency of processing in vitro. Addition of a polyadenylation site or the wild-type histone processing signal downstream of a mutant stem-loop resulted in rescuing the processing of the mutant pre-histone mRNA. These results suggest that if the histone pre-mRNA is not rapidly processed, then it is degraded. 相似文献
4.
Mammalian U6 small nuclear RNA undergoes 3'' end modifications within the spliceosome. 总被引:7,自引:0,他引:7 下载免费PDF全文
Mammalian U6 small nuclear RNA (snRNA) is heterogeneous with respect to the number of 3' terminal U residues. The major form terminates with five U residues and a 2',3' cyclic phosphate. Because of the presence in HeLa cell nuclear extracts of a terminal uridylyl transferase, a minor form of U6 snRNA is elongated, producing multiple species containing up to 12 U residues. In this study we have used glycerol gradients to demonstrate that these U6 snRNA forms are assembled into U6 ribonucleoprotein (RNP), U4/U6 snRNPs, and U4/U5/U6 tri-snRNP complexes. Furthermore, glycerol gradients combined with affinity selection of biotinylated pre-mRNAs led us to show that elongated forms of U6 snRNAs enter the spliceosome and that some of these become shortened with time to a single species having the same characteristics as the major form of U6 snRNA present in mammalian nuclear extracts. We propose that this elongation-shortening process is related to the function of U6 snRNA in mammalian pre-mRNA splicing. 相似文献
5.
6.
Each of the conserved sequence elements flanking the cleavage site of mammalian histone pre-mRNAs has a distinct role in the 3''-end processing reaction. 总被引:14,自引:5,他引:14 下载免费PDF全文
To study the substrate requirements for the histone 3'-end processing reaction of mammalian histone pre-mRNAs, we created a set of mutations in the sequences flanking the processing site of a mouse H3 gene. We found that deletion of the downstream purine-rich element hypothesized to interact with U7 small nuclear RNA abolishes in vitro 3'-end processing. Somewhat surprisingly, however, mutations in the hairpin loop element which destabilize or destroy the secondary structure reduce but do not abolish 3'-end processing. This is in apparent contrast to results obtained for the sea urchin system, where both sequence elements appear to be absolutely required for 3'-end formation. 相似文献
7.
Sequences resembling polyadenylation signals of higher eukaryotes are present downstream of the Schizosaccharomyces pombe ura4+ and cdc10+ coding regions and function in HeLa cells. However, these and other mammalian polyadenylation signals are inactive in S. pombe. Instead, we find that polyadenylation signals of the CYC1 gene of budding yeast Saccharomyces cerevisiae function accurately and efficiently in fission yeast. Furthermore, a 38 bp deletion which renders this RNA processing signal non-functional in S. cerevisiae has the equivalent effect in S. pombe. We demonstrate that synthetic pre-mRNAs encoding polyadenylation sites of S. pombe genes are accurately cleaved and polyadenylated in whole cell extracts of S. cerevisiae. Finally, as is the case in S. cerevisiae, DNA sequences encoding regions proximal to the S. pombe mRNA 3' ends are found to be extremely AT rich; however, no general sequence motif can be found. We conclude that although fission yeast has many genetic features in common with higher eukaryotes, mRNA 3' end formation is significantly different and appears to be formed by an RNA processing mechanism homologous to that of budding yeast. Since fission and budding yeast are evolutionarily divergent, this lower eukaryotic mechanism of mRNA 3' end formation may be generally conserved. 相似文献
8.
Variable effects of the conserved RNA hairpin element upon 3' end processing of histone pre-mRNA in vitro. 总被引:4,自引:5,他引:4 下载免费PDF全文
We have studied the requirements for efficient histone-specific RNA 3' processing in nuclear extract from mammalian tissue culture cells. Processing is strongly impaired by mutations in the pre-mRNA spacer element that reduce the base-pairing potential with U7 RNA. Moreover, by exchanging the hairpin and spacer elements of two differently processed H4 genes, we find that this difference is exclusively due to the spacer element. Finally, processing is inhibited by the addition of competitor RNAs, if these contain a wild-type spacer sequence, but not if their spacer element is mutated. Conversely, the importance of the hairpin for histone RNA 3' processing is highly variable: A hairpin mutant of the H4-12 gene is processed with almost wild-type efficiency in extract from K21 mouse mastocytoma cells but is strongly affected in HeLa cell extract, whereas an identical hairpin mutant of the H4-1 gene is affected in both extracts. The hairpin defect of H4-12-specific RNA in HeLa cells can be overcome by a compensatory mutation that increases the base complementarity to U7 snRNA. Very similar results were also obtained in RNA competition experiments: processing of H4-12-specific RNA can be competed by RNA carrying a wild-type hairpin element in extract from HeLa, but not K21 cells, whereas processing of H4-1-specific RNA can be competed in both extracts. With two additional histone genes we obtained results that were in one case intermediate and in the other similar to those obtained with H4-1. These results suggest that hairpin binding factor(s) can cooperatively support the ability of U7 snRNPs to form an active processing complex, but is(are) not directly involved in the processing mechanism. 相似文献
9.
L Minvielle-Sebastia K Beyer A M Krecic R E Hector M S Swanson W Keller 《The EMBO journal》1998,17(24):7454-7468
Endonucleolytic cleavage of pre-mRNAs is the first step during eukaryotic mRNA 3' end formation. It has been proposed that cleavage factors CF IA, CF IB and CF II are required for pre-mRNA 3' end cleavage in yeast. CF IB is composed of a single polypeptide, Nab4p/Hrp1p, which is related to the A/B group of metazoan heterogeneous nuclear ribonucleoproteins (hnRNPs) that function as antagonistic regulators of 5' splice site selection. Here, we provide evidence that Nab4p/Hrp1p is not required for pre-mRNA 3' end endonucleolytic cleavage. We show that CF IA and CF II devoid of Nab4p/Hrp1p are sufficient to cleave a variety of RNA substrates but that cleavage occurs at multiple sites. Addition of Nab4p/Hrp1p prevents these alternative cleavages in a concentration-dependent manner, suggesting an essential and conserved role for some hnRNPs in pre-mRNA cleavage site selection. 相似文献
10.
Structural and functional characterization of mouse U7 small nuclear RNA active in 3'' processing of histone pre-mRNA. 总被引:16,自引:4,他引:16 下载免费PDF全文
Oligonucleotides derived from the spacer element of the histone RNA 3' processing signal were used to characterize mouse U7 small nuclear RNA (snRNA), i.e., the snRNA component active in 3' processing of histone pre-mRNA. Under RNase H conditions, such oligonucleotides inhibited the processing reaction, indicating the formation of a DNA-RNA hybrid with a functional ribonucleoprotein component. Moreover, these oligonucleotides hybridized to a single nuclear RNA species of approximately 65 nucleotides. The sequence of this RNA was determined by primer extension experiments and was found to bear several structural similarities with sea urchin U7 snRNA. The comparison of mouse and sea urchin U7 snRNA structures yields some further insight into the mechanism of histone RNA 3' processing. 相似文献
11.
12.
The highly conserved U small nuclear RNA 3''-end formation signal is quite tolerant to mutation. 总被引:10,自引:3,他引:10 下载免费PDF全文
Formation of the 3' end of U1 and U2 small nuclear RNA (snRNA) precursors is directed by a conserved sequence called the 3' box located 9 to 28 nucleotides downstream of all metazoan U1 to U4 snRNA genes sequenced so far. Deletion of part or all of the 3' box from human U1 and U2 genes drastically reduces 3'-end formation. To define the essential nucleotides within this box that direct 3'-end formation, we constructed a set of point mutations in the conserved residues of the human U1 3' box. The ability of the various mutations to direct 3'-end formation was tested by microinjection into Xenopus oocytes and transfection into HeLa cells. We found that the point mutations had diverse effects on 3'-end formation, ranging from no effect at all to severe inhibition; however, no single or double point mutation we tested completely eliminated 3'-end formation. We also showed that a rat U3 3' flank can effectively substitute for the human U1 3' flank, indicating that the 3' boxes of the different U snRNA genes are functionally equivalent. 相似文献
13.
Two isoforms of DNA topoisomerase II, alpha and beta, coded by separate genes, are expressed in actively cycling vertebrate cells. Some previous studies have suggested that only topoisomerase II alpha remains associated with chromosomes at mitosis. Here, the distributions of topoisomerase II alpha and beta in mitosis were studied by subcellular fractionation and by immunolocalization. Both isoforms of topoisomerase II were found to remain associated with mitotic chromatin. Topoisomerase II alpha was distributed along chromosome arms throughout mitosis and was highly concentrated at centromeres until mid-anaphase, particularly in some cell types. Topoisomerase II beta showed weak concentration at centromeres in early mitosis in some cell types and was distributed along chromosome arms at every stage of mitosis through telophase. These studies suggest that in most cells both the major topoisomerase II isoforms may play roles in chromatin remodeling during M phase. 相似文献
14.
Specific contacts between mammalian U7 snRNA and histone precursor RNA are indispensable for the in vitro 3'' RNA processing reaction. 总被引:25,自引:6,他引:19 下载免费PDF全文
We have made a detailed molecular analysis of the reactions leading to the formation of mature 3' ends in mammalian histone mRNAs. Using two analytical protocols we have identified an essential sequence motif in the downstream spacer which is consistently present, albeit in diffuse form, mammalian histone genes. Tampering with this sequence element completely abolishes 3' processing. However, 3' cleavage in vitro, although at a very much reduced rate, can be detected when the conserved hairpin is deleted from histone precursor mRNAs. U7 snRNA, previously shown to be essential for the maturation of sea urchin histone messages, was isolated from murine cells and the sequence was determined. The approximately 63-nucleotide, trimethyl-G-capped, murine U7 snRNA possesses a sequence shown in the sea urchin U7 to be required for Sm-precipitability, and like the sea urchin U7, the 3' end of murine U7 is encased in a hairpin structure. The 5' sequence of murine U7 exhibits extensive sequence complementarity to the conserved downstream motif of the histone precursor. As expected, oligo-nucleotide-directed RNase H cleavage of this portion of murine U7 inhibits the in vitro processing reaction. These experiments identify a set of specific contacts between mammalian U7 and histone precursor RNA which is indispensable for the maturation reaction. 相似文献
15.
H2A.X. a histone isoprotein with a conserved C-terminal sequence, is encoded by a novel mRNA with both DNA replication type and polyA 3'' processing signals. 总被引:5,自引:8,他引:5 下载免费PDF全文
A full length cDNA clone that directs the in vitro synthesis of human histone H2A isoprotein H2A.X has been isolated and sequenced. H2A.X contains 142 amino acid residues, 13 more than human H2A.1. The sequence of the first 120 residues of H2A.X is almost identical to that of human H2A.1. The sequence of the carboxy-terminal 22 residues of H2A.X is unrelated to any known sequence in vertebrate histone H2A; however, it contains a sequence homologous with those of several lower eukaryotes. This homology centers on the carboxy-terminal tetrapeptide which in H2A.X is SerGlnGluTyr. Homologous sequences are found in H2As of three types of yeasts, in Tetrahymena and Drosophila. Seven of the nine carboxy-terminal amino acids of H2A.X are identical with those of S. cerevisiae H2A.1. It is suggested that this H2A carboxy-terminal motif may be present in all eukaryotes. The H2A.X cDNA is 1585 bases long followed by a polyA tail. There are 73 nucleotides in the 5' UTR, 432 in the coding region, and 1080 in the 3' UTR. Even though H2A.X is considered a basal histone, being synthesized in G1 as well as in S-phase, and its mRNA contains polyA addition motifs and a polyA tail, its mRNA also contains the conserved stem-loop and U7 binding sequences involved in the processing and stability of replication type histone mRNAs. Two forms of H2A.X mRNA, consistent with the two sets of processing signals were found in proliferating cell cultures. One, about 1600 bases long, contains polyA; the other, about 575 bases long, lacks polyA. The short form behaves as a replication type histone mRNA, decreasing in amount when cell cultures are incubated with inhibitors of DNA synthesis, while the longer behaves as a basal type histone mRNA. 相似文献
16.
17.
18.
19.
20.
I Pettersson M Hinterberger T Mimori E Gottlieb J A Steitz 《The Journal of biological chemistry》1984,259(9):5907-5914
The Sm small nuclear ribonucleoproteins (snRNPs) from mammalian cells have been characterized as containing U1, U2, U4, U5, and U6 RNA associated with some subset of at least 10 distinct polypeptides (called 68K, A, A', B, B', C, D, E, F, and G) that range in molecular weight from 68,000 to 11,000. Whereas this entire collection of snRNP particles is precipitated by patient anti-Sm autoantibodies, anti-(U1)RNP autoantibodies specifically recognize U1 snRNPs. Here, we have performed immunoblots using the sera from 29 patients and a mouse anti-Sm monoclonal antibody to identify which HeLa cell snRNP proteins carry anti-Sm or anti-(U1)RNP antigenic determinants. Strikingly, every serum surveyed, as well as the monoclonal antibody, recognizes determinants on two or more snRNP protein components. The three proteins, 68K, A, and C, that uniquely fractionate with U1 snRNPs are specifically reactive with anti-(U1)RNP sera in blots. Anti-Sm patient sera and the mouse monoclonal antibody react with proteins B, B', D, and sometimes E, one or more of which must be present on all Sm snRNPs. The blot results combined with data obtained from a refined 32P-labeled RNA immunoprecipitation assay reveal that, in our collection of the sera from 29 patients, anti-Sm rarely exists in the absence of equal or higher titers of anti-(U1)RNP; moreover, (U1)RNP sera often contain detectable levels of anti-Sm. Our findings further define the protein composition of the Sm snRNPs and raise intriguing questions concerning the relatedness of snRNP polypeptides and the mechanism of autoantibody induction. 相似文献