首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To simulate clinical features in human chronic kidney disease (CKD), SD rats were subjected to 5/6 nephrectomy in this study. We found that periostin gene was upregulated in the remnant kidneys using Agilent gene microarrays, and further explored its role via in vivo and in vitro experiments. Intrarenal renin–angiotensin system (RAS) was activated in 5/6 nephrectomized rats and partly deactivated by injection of adenoviruses encoding short hairpin RNA against periostin (sh-periostin). Renal fibrosis in nephrectomized rats and profibrotic transforming growth factor-β-induced epithelial–mesenchymal transition (EMT) and ERK1/2 activation in NRK-52E cells were suppressed by sh-periostin. Moreover, knockdown of periostin decreased the generation of Interleukin 6 (IL6) and tumor necrosis factor-α (TNF-α) and accelerated p62 degradation in the remnant kidneys. Both HK-2 cells treated with recombinant periostin and NRK-52E cells infected with adenoviruses expressing periostin produced more IL6 and TNF-α than control cells and displayed impaired autophagy as evidenced by inhibition of LC3II to LC3I conversion, Beclin 1 expression, and p62 degradation. By treating cells with rapamycin, an inhibitor of mamalian target of rapamycin known to activate autophagy, we noted that periostin-induced inflammation was inhibited. Additionally, HK-2 cells transfected with periostin overexpression plasmid generated more CCL2 and CXCL10, two important chemotactic factors, than untransfected cells. Conditioned medium from HK-2 cells overexpressing periostin augmented chemotaxis of THP-1 macrophages. Collectively, our work demonstrates that knockdown of periostin attenuates 5/6 nephrectomy-induced intrarenal RAS activation, fibrosis, and inflammation in rats. These findings advance our understanding of periostin's role in CKD induced by nephron loss.  相似文献   

2.
3.
Dental follicle cells in the periodontium are known to have the ability to differentiate into fibroblasts, cementoblasts, and osteoblasts during mouse periodontal development. From embryonic day 14 (E14) to postnatal day 11 (PN11), histological observations showed dramatic alterations in the relative width of the periodontal ligament (PDL)-forming region between the alveolar bone-forming and tooth root-forming area. At PN2, the width of the PDL-forming region showed a minimum, but with a higher expression of NOGGIN and proliferation cell nuclear antigen than the other regions. At PN11, the relative width of the PDL-forming region had expanded. Transplantation of individual regions of the developing tooth germ under the kidney renal capsule showed that dental follicle cells at E14 possessed the potential to develop into mineralized tissue after 3 weeks. These results suggested that the recovery of PDL width at PN11 may have resulted from cell proliferation and molecular interactions between osteogenic factors and their antagonists, such as interactions between bone morphogenetic protein 4 (BMP4) and NOGGIN, simlilar to those observed in suture, limb, and somite formation. To confirm the molecular interaction between BMP4 and NOGGIN, NOGGIN-protein bead implantation onto cultures was employed in vitro. This study thus indicates that harmonious interactions between NOGGIN and BMP in PDL-forming cells, which show higher cell proliferation than neighboring cells, might be important for proper periodontium development. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (03-PJ1-PG1-CH08-0001).  相似文献   

4.
The present study aimed at assessing the test–retest reliability of wavelet – and Fourier derived (instantaneous) median frequencies of surface electromyographic (EMG) measurements of back and hip muscles during isometric back extensions. Twenty healthy subjects (10 males and 10 females) performed a modified Biering-Sørensen test on two separate days, with a 1-week interval between the two tests. Surface EMG measurements were bilaterally performed from the latissimus dorsi, the thoracic and lumbar parts of the longissimus thoracis, the thoracic and lumbar parts of the iliocostalis lumborum, the multifidus, the gluteus maximus and the biceps femoris. In addition, three-dimensional kinematic data were recorded of the subjects’ lumbar vertebrae. The (instantaneous) median frequencies were calculated from the EMG signals using continuous wavelet (IMDF) – and short-time Fourier transforms (MDF). Linear regressions performed on the IMDF and MDF data as a function of time yielded slopes (IMDFslope and MDFslope) and intercepts (IMDFinit and MDFinit) of the regression lines. Test–retest reliability was assessed on the normalized slopes and intercept parameters by means of intraclass correlation coefficients (ICC) and standard errors of measurements expressed as percentages of the mean values (% SEM). The results of IMDFslope and MDFslope parameters indicated ICCs for back and hip muscles between .443 and .727 for IMDFslope, values between .273 and .734 for MDFslope, % SEM between 7.6% and 58.9% for IMDFslope and % SEM between 8.2% and 25.3% for MDFslope, respectively. The ICCs for IMDFinit and MDFinit parameters varied between .376 and .907 for IMDFinit and between .383 and .883 for MDFinit, and % SEM ranged from 2.7% to 6.3% for IMDFinit and from 2.6% to 4.7% for MDFinit, respectively. These results indicate that both wavelet – and Fourier based (instantaneous) median frequency parameters generally are reliable in the analysis of back and hip muscle fatigue during a modified Biering-Sørensen test.  相似文献   

5.
This study examined the detailed gene expression pattern of three different heat shock proteins (HSPs), Hsc73, Hsj2, and Hsp86, by means of an in situ hybridization method. Hsc73, Hsj2, and Hsp86 were shown in our previous study to be differentially expressed in the mouse embryonic mandible at day 10.5 (E10.5) gestational age. These HSP genes showed similar expression patterns during development of the mouse lower first molar. HSPs-expressing cells were widely distributed in both the epithelial and underlying ectomesenchymal cells at E10.5, and then were slightly localized at E12 in an area where the tooth germ of the lower first molar is estimated to be formed. A strong expression of HSPs was observed in the tooth germ at E13.5. At the cap stage, HSPs were expressed in the enamel organ and dental papilla. At the bell stage, HSPs were distinctly expressed in the inner enamel epithelium and dental papilla cells facing the inner enamel epithelial layer, which later differentiate into ameloblasts and odontoblasts, respectively. This study is the first report in which Hsc73, Hsj2, and Hsp86 were distinctly expressed in the developing tooth germ, thus suggesting these HSPs are related to the development and differentiation of odontogenic cells.  相似文献   

6.
Mutations in two genes, uncoordinated (unc) and uncoordinated-like (uncl), lead to a failure of mechanotransduction in Drosophila. UNCL, the human homolog of unc and uncl, is preferentially expressed in periodontal ligament (PDL) fibroblasts compared with gingival fibroblasts. However, the precise role of UNCL in the PDL remains unclear. The aim of the present study has been to examine whether mechanical stimuli modulate the expression of UNCL in the human PDL in vivo and in vitro and to examine the roles of UNCL in the development, regeneration, and repair of the PDL. We have investigated the expression pattern of UNCL during the development of periodontal tissue and the response of PDL fibroblasts to mechanical stress in vivo and in vitro. The expression of UNCL mRNA and protein increases with PDL fibroblast differentiation from the confluent to multilayer stage but slightly decreases on mineralized nodule formation. UNCL has also been localized in ameloblasts and adjacent cells, differentiating cementoblasts, and osteoblasts of the developing tooth. Strong distinct UNCL expression has further been observed in the differentiating cementoblasts of the tooth periodontium at the site of tension after orthodontic tooth movement. Application of cyclic mechanical stress on PDL fibroblasts increases the expression of UNCL mRNA. These results indicate that UNCL plays important roles in the development, differentiation, and maintenance of periodontal tissues and also suggest a potential role of UNCL in the mechanotransduction of PDL fibroblasts.This work was supported by a grant from the Korea Health 21R&D Project, Ministry of Health & Welfare, Republic of Korea (03-PJ1-PG1-CH08-0001).  相似文献   

7.
Recent studies have reported that supernumerary teeth were observed in the maxillary incisor area in several Pax6 homozygous mutant mouse and rat strains. To date, it remains unknown whether Pax6 is expressed during tooth development in any species. The study aimed to analyze the expression of Pax6 during mouse incisor and molar development. C57BL/6J mouse embryos on days E12.5, E13.5, E14.5, E16.5 and E18.5 were produced. Heads from these embryos, as well as from P1.5 mice, were processed for paraffin wax embedding (N ≥ 3 for each stage) and prepared for immunohistochemistry. Pax6 immunostaining was found in all tooth germs examined. At the E12.5 dental placode, E13.5 bud stage, E14.5 cap stage and E16.5 early bell stage, Pax6 was expressed in ectodermally derived tissues of tooth germs and oral epithelia adjacent to the tooth germs. Cells in the underlying dental ectomesenchyme that showed Pax9 expression were Pax6 negative. At E18.5 and P1.5, Pax6 was expressed in more differentiated ameloblasts and cells of the stratum intermedium and stellate reticulum that were derived from the oral epithelium, as well as in mesenchyme-derived differentiated odontoblasts. Pax6 expression was also observed in the submandibular gland, tongue filiform papilla and hair follicle at E16.5 and P1.5. The present study demonstrated that Pax6 was expressed in incisor and molar germs during mouse tooth development. The results provide a basis for exploring the function of Pax6 during tooth development.  相似文献   

8.
Teeth, an excellent model for studying organogenesis, develop from a series of epithelial–mesenchymal interactions that are mediated by a complex molecular network. Bcor (BCL-6 interacting corepressor) has recently been discovered, but little is known about its function in tooth development. Mutations in BCOR affect humans with oculofaciocardiodental syndrome, which is an X-linked dominant disorder with presumed male lethality and which comprises microphthalmia, congenital cataracts, radiculomegaly, and cardiac and digital abnormalities. In this study, the Bcor expression pattern has been intensively investigated during mouse molar development. Bcor is expressed in both dental epithelium and the mesenchyme at E11.5. To understand the function of Bcor, knockdown of Bcor has been examined by using lentivirus-mediated RNA interference. Silencing of Bcor expression in dental mesenchymal cells at E14.5 causes dentinogenesis defects and retardation of tooth root development. Thus, our results suggest that Bcor expressed in the mesenchyme plays crucial roles during early tooth development. The function of Bcor expressed in the epithelium remains to be elucidated.  相似文献   

9.
We previously performed cDNA subtraction between the mouse mandibles on embryonic day 10.5 (E10.5) in the pre-initiation stage of the odontogenesis and E12.0 in the late initiation stage to identify genes expressed at its beginning. Adenosine triphosphate synthase subunit a (Atpase6) is one of the highly expressed genes in the E12.0 mandible including tooth germs. In situ hybridization was conducted using the mouse mandibular first molar from E10.5 to E18.0 to determine the precise expression patterns of Atpase6 mRNA in the developing tooth germ. Atpase6 mRNA was strongly expressed in the presumptive dental epithelium and the underlying mesenchyme at E10.5, and in the thickened dental epithelium at E12.0 and E13.0. Strong in situ signals were observed in the epithelium at E14.0, and in the enamel organ excluded the area of the primary enamel knot at E15.0. Atpase6 was strongly expressed in the inner enamel epithelium, the adjacent stratum intermedium, and the outer enamel epithelium in the cervical loops from E16.0 to E18.0. In addition, strong Atpase6 signals were coincidently demonstrated in various developing cranio-facial organs. These results suggest that Atpase6 participates in the high energy-utilizing functions of the cells related to the initiation and the development of the tooth germ as well as those of the other cranio-facial organs.  相似文献   

10.
We have previously demonstrated that tooth size is determined by dental mesenchymal factors. Exogenous bone morphogenetic protein (BMP)4, Noggin, fibroblast growth factor (FGF)3 and FGF10 have no effect on tooth size, despite the expressions of Bmp2, Bmp4, Fgf3, Fgf10 and Lef1 in the dental mesenchyme. Among the wingless (Wnt) genes that are differentially expressed during tooth development, only Wnt5a is expressed in the dental mesenchyme. The aims of the present study were to clarify the expression pattern of Wnt5a in developing tooth germs and the role of Wnt5a in the regulation of tooth size by treatment with exogenous WNT5A with/without an apoptosis inhibitor on in vitro tooth germs combined with transplantation into kidney capsules. Wnt5a was intensely expressed in both the dental epithelium and mesenchyme during embryonic days 14–17, overlapping partly with the expressions of both Shh and Bmp4. Moreover, WNT5A retarded the development of tooth germs by markedly inducing cell death in the non-dental epithelium and mesenchyme but not widely in the dental region, where the epithelial–mesenchymal gene interactions among Wnt5a, Fgf10, Bmp4 and Shh might partly rescue the cells from death in the WNT5A-treated tooth germ. Together, these results indicate that WNT5A-induced cell death inhibited the overall development of the tooth germ, resulting in smaller teeth with blunter cusps after tooth-germ transplantation. Thus, it is suggested that Wnt5a is involved in regulating cell death in non-dental regions, while in the dental region it acts as a regulator of other genes that rescue tooth germs from cell death.  相似文献   

11.
12.
13.
14.
The hypothesis that North American octoploid Agropyron smithii Rydb., 2n = 56, originated by hybridization between tetraploid Agropyron and Elymus species, followed by chromosome doubling, was tested by observing chromosome pairing in hybrids of A. smithii with an induced amphiploid, 2n = 56, derived from E. canadensis L., 2n = 28, X E. dasystachys Trin., 2n = 28, F1's. Chromosome pairing in A. smithii averaged 0.52I, 27.70II, 0.01III, and 0.01IV in 184 metaphase-I cells; and the amphiploid averaged 1.13I and 27.44II in 195 cells. Chromosome pairing in A. smithii X amphiploid hybrids averaged 8.20I, 23.38II, 0.34III, and 0.05IV in 101 metaphase-I cells. It was concluded that A. smithii was genomically similar to the E. canadensis-E. dasystachys amphiploid. The basic genome formula of the amphiploid is SSHHJJXX, with the SSHH genomes coming from E. canadensis and the JJXX genomes coming from E. dasystachys. Consideration of the morphological, ecological, and reproductive characteristics of all North American species that contain the basic SSHH and JJXX genomes led to the conclusion that A. dasystachyum (Hook.) Scribn., SSHH, and E. triticoides Buckl., JJXX, are the probable progenitors of A. smithii.  相似文献   

15.
The distribution and ultrastructure of glycogen deposits were investigated in the murine tooth germ by histochemical periodic acid-Schiff (PAS) staining and transmission electron microscopy. Lower and upper first molars were examined in mouse embryos at embryonic days 11.5–17 (E11.5–E17) and in 2-day-old postnatal (P2) mice. The oral and dental epithelia and the mesenchymal cells were generally PAS-positive during tooth morphogenesis. PAS-negative cells were present at E13 in the distal tip of the tooth bud epithelium and in the contacting mesenchyme, and this complete lack of PAS reactivity continued in the dental papilla mesenchyme and inner enamel epithelium during the cap and bell stages. The lack of glycogen deposits in the interacting epithelium and mesenchyme during early morphogenesis may be associated with their demonstrated high signaling activities. Mesenchymal cells in the dental follicle consistently possessed small clusters or large pools of glycogen, which disappeared by P2. Since an intense PAS reaction was seen in mesenchymal cells at future bone sites, the glycogen in the dental follicle cells may be associated with their development into hard-tissue-forming cells. Ultrastructural observation of the enamel organ cells from the cap to early bell stages (E14–E15) revealed the occurrence of glycogen pools, which were associated with the Golgi apparatus and with vesicles having amorphous contents. Glycogen particles were also occasionally present inside vesicles or in the extracellular matrix. These may be associated with the exocytosis of glycosaminoglycan components into extracellular spaces and the formation of the stellate reticulum. Received: 9 November 1998 / Accepted: 17 January 1999  相似文献   

16.
Introduction Human dental follicle cells (HDFCs) derived from human impacted third molars (wisdom teeth) have been shown to be a significant source of adult stem cells. Generation of mesenchymal stem cell-like cells from dental follicles causes minimal surgical stress. In vitro and in vivo reports showed that HDFCs can be utilized in gene and cell therapy applications which make them an attractive alternative source for different gene-cell therapy applications. However, there are currently no systematic comparative studies on transfection potential of HDFC cells using different chemical and electro-poration techniques. Methods Stem cells from impacted third tooth molars were isolated, and analyzed for expression of surface markers. Transfection efficiencies of four commercially available transfection reagents (Transfast, Escort V, Superfect and FuGene HD) and electro-poration on isolated stem cells were compared. Results Isolated HDFCs were stained positive for CD105, CD90, CD73, CD166, and negative for CD34, CD45, and CD133. Among the chemical transfection reagents used in this study, FuGene HD was the most efficient in transfecting HDFCs, even in the presence of 10% serum. Conclusion Electro-poration of HDFCs yield relatively high transfection rates and cell viability when compared to chemical transfection techniques. Our observations might be useful for developing gene and cell therapy applications using dental follicle stem cells.  相似文献   

17.
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.  相似文献   

18.
Understanding the cellular and molecular mechanisms that underlie tooth regeneration and renewal has become a topic of great interest1-4, and the mouse incisor provides a model for these processes. This remarkable organ grows continuously throughout the animal''s life and generates all the necessary cell types from active pools of adult stem cells housed in the labial (toward the lip) and lingual (toward the tongue) cervical loop (CL) regions. Only the dental stem cells from the labial CL give rise to ameloblasts that generate enamel, the outer covering of teeth, on the labial surface. This asymmetric enamel formation allows abrasion at the incisor tip, and progenitors and stem cells in the proximal incisor ensure that the dental tissues are constantly replenished. The ability to isolate and grow these progenitor or stem cells in vitro allows their expansion and opens doors to numerous experiments not achievable in vivo, such as high throughput testing of potential stem cell regulatory factors. Here, we describe and demonstrate a reliable and consistent method to culture cells from the labial CL of the mouse incisor.  相似文献   

19.
Background information. Although adult bone‐marrow‐derived cell populations have been used to make teeth when recombined with embryonic oral epithelium, the differences between dental and non‐dental stem‐cell‐mediated odontogenesis remain an open question. Results. STRO‐1+ (stromal precursor cell marker) DPSCs (dental pulp stem cells) and BMSSCs (bone marrow stromal stem cells) were isolated from rat dental pulp and bone marrow respectively by magnetic‐activated cell‐sorting techniques. Their odontogenic capacity was compared under the same inductive microenvironment produced by ABCs (apical bud cells) from 2‐day‐old rat incisors. Co‐cultured DPSCs/ABCs in vitro showed more active odontogenic differentiation ability than mixed BMSSCs/ABCs, as indicated by the accelerated matrix mineralization, up‐regulated alkaline phosphatase activity, cell‐cycle modification, and the expression of tooth‐specific proteins and genes. After cultured for 14 days in the renal capsules of rat hosts, recombined DPSC/ABC pellets formed typical tooth‐shaped tissues with balanced amelogenesis and dentinogenesis, whereas BMSSC/ABC recombinants developed into atypical dentin—pulp complexes without enamel formation. DPSC and BMSSC pellets in vivo produced osteodentin‐like structures and fibrous connective tissues respectively. Conclusions. DPSCs presented more striking odontogenic capability than BMSSCs under the induction of postnatal ABCs. This report provides critical insights into the selection of candidate cells for tooth regeneration between dental and non‐dental stem cell populations.  相似文献   

20.
Accumulating evidence suggests that the sympathetic nervous system modulates inflammatory responses and bone remodeling. We have studied the effects of sympathectomy and orthodontic tooth movement (OTM) on root resorption, immunocompetent cell recruitment, neuropeptide, neurokinin-1 receptor (NK1-R), and interleukin 6 (IL-6) expression. Experimental rats (n=8) had the right superior cervical ganglion surgically removed, whereas control rats (n=6) underwent sham surgery. Three days later, all rats had the right maxillary first molar moved mesially by an orthodontic appliance. The rats were perfused 13 days later, and the right maxillae were processed for immunohistochemistry by using primary antibodies directed against ED1 antigen, CD43, substance P (SP), NK1-R, neuropeptide Y (NPY), and IL-6. Following OTM, sympathectomized (SCGx) rats had significantly more root resorption (P<0.01) and SP-immunoreactive (IR) fibers (P=0.01) in the compressed periodontal ligament (PDL) compared with control rats. There was a significant decrease in recruitment of CD43+ cells in the pulp after OTM in SCGx rats compared with control rats (P=0.02). An upregulation of NK1-R immunoreactivity was observed surrounding the hyalinized tissue, and an increase in the number of NK1-R IR cells and density of SP-IR fibers was present in first molar pulp of all rats. NPY-IR fibers were absent in the compressed PDL of SCGx and control rats. Thus, OTM induces remodeling not only around the periodontal tissues, but also in the dental pulp. The sympathetic nerves have an inhibitory effect on hard tissue resorption and a stimulatory effect on CD43+ cell recruitment after OTM.This study was supported by the Norwegian Research Council  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号