首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Amyloid-β peptide ending at 42nd residue (Aβ42) is believed as a pathogenic peptide for Alzheimer disease. Although γ-secretase is a responsible protease to generate Aβ through a processive cleavage, the proteolytic mechanism of γ-secretase at molecular level is poorly understood.

Results

We found that the transmembrane domain (TMD) 1 of presenilin (PS) 1, a catalytic subunit for the γ-secretase, as a key modulatory domain for Aβ42 production. Aβ42-lowering and -raising γ-secretase modulators (GSMs) directly targeted TMD1 of PS1 and affected its structure. A point mutation in TMD1 caused an aberrant secretion of longer Aβ species including Aβ45 that are the precursor of Aβ42. We further found that the helical surface of TMD1 is involved in the binding of Aβ45/48 and that the binding was altered by GSMs as well as TMD1 mutation.

Conclusions

Binding between PS1 TMD1 and longer Aβ is critical for Aβ42 production.  相似文献   

2.
Abstract

The complex formation between elongation factor Tu (EF-Tu), GTP, and valyl-tRNAVal 1A has been investigated in a hepes buffer of “pH” 7.4 and 0.2 M ionic strength using the small-angle neutron scattering method at concentrations of D2O where EF-Tu (42% D2O) and tRNA (71% D2O) are successively matched by the solvents. The results indicate that EF-Tu undergoes a conformational change and contracts as a result of the complex formation, since the radius of gyration decreases by 15% from 2.82 to 2.39 nm. tRNAVal 1A, on the other hand, seems to mainly retain its conformation within the complex, since the radii of gyration for the free (after correction for interparticular scattering) and complexed form are essentially the same. 2.38 and 2.47 nm, respectively.  相似文献   

3.
While fresh human hepatocyte cultures are widely used to model hepatic cytochrome P450 (CYP) regulation and activity, their CYP1A subfamily composition induced by, e.g., polycyclic aromatic hydrocarbons is ambiguous. CYP1A1, CYP1A2, or both have been reported to be expressed, and their varied roles in chemical carcinogenesis makes resolution of which CYPs are expressed essential. We have used an immunoblot system with Bis-Tris-HCl-buffered polyacrylamide gel, which clearly resolves human CYP1A1 and CYP1A2, and polyclonal goat anti-human CYP1A1/CYP1A2 and rabbit anti-human CYP1A2 antibodies to probe the expressed CYP1A1 and CYP1A2 composition of seven individual human hepatocyte cultures induced with 5 microM benzo[k]fluoranthene (BKF) for 24 h. In six of the cultures only CYP1A1 was detected, and in the seventh both CYPs were detected. In most vehicle-treated hepatocyte cultures, neither CYP1A1 nor CYP1A2 was detected. In three additional hepatocyte cultures treated individually with BKF and 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD), the resultant induced CYP1A1/1A2 profiles were essentially not influenced by the nature of the inducing agents. To develop an activity-based assay to differentiate between CYP1A1 and CYP1A2 expression in human hepatocytes, our previously published R warfarin assay (Drug Metab. Disp. (1995) 23, 1339-1345) was applied to TCDD (10 nM)-treated hepatocyte culture. The low concentration of TCDD did not produce inhibition of the warfarin metabolism-such inhibition could confound the results. Based on the ratios of 6- to 8-hydroxywarfarin formed in two cultures, the ratios of CYP1A1/CYP1A2 expressed in these cultures were determined and they agreed with the ratios determined by immunoblot analysis. Thus each individual human hepatocyte culture must be characterized for induced CYP1A1 and CYP1A2 expression in studies of CYP1A activity. The warfarin assay provides a means of characterizing the cultures.  相似文献   

4.
The concept of functional selectivity offers great potential for the development of drugs that selectively activate a specific intracellular signaling pathway. During the last few years, it has become possible to systematically analyse compound libraries on G protein-coupled receptors (GPCRs) for this ‘biased’ form of signaling. We screened over 800 compounds targeting the class of adenosine A1 receptors using a β-arrestin-mediated signaling assay in U2OS cells as a G protein-independent readout for GPCR activation. A selection of compounds was further analysed in a G protein-mediated GTPγS assay. Additionally, receptor affinity of these compounds was determined in a radioligand binding assay with the agonist [3H]CCPA. Of all compounds tested, only LUF5589 9 might be considered as functionally selective for the G protein-dependent pathway, particularly in view of a likely overestimation of β-arrestin signaling in the U2OS cells. Altogether, our study shows that functionally selective ligands for the adenosine A1 receptor are rare, if existing at all. A thorough analysis of biased signaling on other GPCRs also reveals that only very few compounds can be considered functionally selective. This might indicate that the concept of functional selectivity is less common than speculated.  相似文献   

5.
We have cloned and sequenced a 2845 bp cDNA representing the 3'-end of either a new picorna-like virus species or genotype of Solenopsis invicta virus-1 (SINV-1). Analysis of the nucleotide sequence revealed 1 large open reading frame. The amino acid sequence of the translated open reading frame was most identical to structural proteins of SINV-1 (97%), followed by the Kashmir bee virus (KBV, 30%), and acute bee paralysis virus (ABPV, 29%). A PCR-based survey for SINV-1 and the new species or genotype (tentatively named S. invicta virus-1A, SINV-1A) using RNA extracts of S. invicta collected around Gainesville, Florida, revealed a mean colony infestation rate of 25% by SINV-1 and 55% by SINV-1A. Both SINV-1 and SINV-1A were found to co-infect 17.5% of the nests surveyed. Although the data preclude definitive species or genotype assignment, there is no doubt that SINV-1A is distinct from SINV-1, identifiable, and infects S. invicta. We provide a simple RT-PCR technique capable of discerning SINV-1 and SINV-1A infection of S. invicta.  相似文献   

6.
A progressive accumulation of amyloid β-protein (Aβ) is widely recognized as a pathological hallmark of Alzheimer’s disease (AD). Substantial progress has been made toward understanding the neurodegenerative cascade initiated by small soluble species of Aβ and recent evidence supports the notion that microtubule rearrangements may be proximate to neuritic degeneration and deficits in episodic declarative memory. Here, we examined primary cortical neurons for changes in markers associated with synaptic function following exposure to sublethal concentrations of non-aggregated Aβ-peptide. This data show that soluble Aβ species at a sublethal concentration induce degradation of the microtubule-associated protein 1A (MAP1A) without concurrently affecting dendritic marker MAP2 and/or the pre-synaptic marker synaptophysin. In addition, MAP1A was found to highly co-localize with the postsynaptic density-95 (PSD-95) protein, proposing that microtubule perturbations might be central for the Aβ-induced neuronal dysfunctions as PSD-95 plays a key role in synaptic plasticity. In conclusion, this study suggests that disruption of MAP1A could be a very early manifestation of Aβ-mediated synaptic dysfunction—one that presages the clinical onset of AD by years. Moreover, our data support the notion of microtubule-stabilizing agents as effective AD drugs.  相似文献   

7.
New findings show that neurotrophic and antidepressant effects of 5-HT in brain can, in part, be mediated by activation of the 5-HT1A receptor protomer in the hippocampal and raphe FGFR1–5-HT1A heteroreceptor complexes enhancing the FGFR1 signaling. The dynamic agonist modulation of the FGFR1–5-HT1A heteroreceptor complexes and their recruitment of β-arrestin is now determined in cellular models with focus on its impact on 5-HT1AR and FGFR1 homodimerization in the heteroreceptor complexes based on BRET2 assays. The findings show that coagonist treatment with 8-OH-DPAT and FGF2 but not treatment with the 5-HT1A agonist alone markedly increases the BRETmax values and significantly reduces the BRET50 values of 5HT1A homodimerization. The effects of FGF2 or FGF20 with or without the 5-HT1A agonist were also studied on the FGFR1 homodimerization of the heteroreceptor complexes. FGF2 produced a marked and rapid increase in FGFR1 homodimerization which partially declined over a 10 min period. Cotreatment with FGF2 and 5-HT1A agonist blocked this decline in FGFR1 homodimerization. Furthermore, FGF2 alone produced a small increase in the BRET2 signal from the 5-HT1A-β-arrestin2 receptor–protein complex which was additive to the marked effect of 8-OH-DPAT alone. Taken together, the participation of 5-HT1A and FGFR1 homodimers and recruitment of β-arrestin2 was demonstrated in the FGFR1–5-HT1A heteroreceptor complexes upon agonist treatments.  相似文献   

8.
Human gastric cancer MKN-45 cells were transfected with pULB 3238,a plasmid carrying MVMp MS-1 gene with its original P4 promoter replaced by the glucocorticoid inducible promoter MMTV-LTR.After the integration and expression of NS-1 gene,some of the transfectants died,while others remained alive,but the growth features of survived cells were changed.For further study on the antineoplastic function of parvoviral NS-1 protein in vivo,transgenic mice carrying NS-1 genes were established by conventional method.Among 4 founders,one of them was found to be able to transmit the transgene to around 50% of their offsprings.RT-PCR was performed to indicate the expression of NS-1 gene in transgenic mice and its mRNA appeared in a variety of tissues.The expression of integrated NS-1 gene may correlate with the decreased incidence of tumor induced in vivo by chemical carcinogens.  相似文献   

9.
We report the synthesis and evaluation of a series of cholesterol side-chain analogs as mechanistic probes of three important Mycobacterium tuberculosis cytochrome P450 enzymes that selectively oxidize the ω-position of the methyl-branched cholesterol side-chain. To probe the structural requirements for the thermodynamically disfavored ω-regiospecificity we compared the binding of these substrate analogs to each P450, determined the turnover rates, and characterized the enzymatic products. The results are discussed in the context of the structure-activity relationships of the enzymes and how their active sites enforce ω-oxidation.  相似文献   

10.
《Free radical research》2013,47(12):1046-1053
Abstract

The reaction of hydroxyl radicals (?OH) with Aβ1-16 peptide was carried out using pulse radiolysis to understand the effect of oxidation of peptide on its copper-binding properties. This reaction produced oxidized, dimeric and trimeric Aβ1-16 peptide species. The formation of these products was established with the help of fluorescence spectroscopy and mass spectrometry. The mass spectral data indicate that the major site of oxidation is at His6, while the site for dimerization is at Tyr10. Diethyl pyrocarbonate-treated Aβ1-16 peptide did not produce any trimeric species upon oxidation with ?OH. The quantitative chemical modification studies indicated that one of the three histidine residues is covalently modified during pulse radiolysis. The copper-binding studies of the oxidized peptide revealed that it has similar copper-binding properties as the unoxidized peptide. Further, the cytotoxicity studies point out that both oxidized and unoxidized Aβ1-16 peptide are equally efficient in producing free radicals in presence of copper and ascorbate that resulted in comparable cell death.  相似文献   

11.
In-vitro incubation of human cerebrospinal fluid (CSF) obtained from patients ranging from 22–78 years with 10 μM of dynorphin A1–13 (Dyn A1–13) resulted in several cleavage products. Dyn A1–12 and A2–13 were identified as the major CSF metabolites by matrix-assisted laser desorption mass spectrometry (LD-MS). Further metabolites were Dyn A1–6, A2–12 and A4–12. LD-MS further suggested the formation of Dyn A1–8, A1–7, A1–10, A7–10, A3–12, A7–12, A3–13, A7–13 and A8–13. The metabolic half-life of Dyn A1–13 at 37°C was approximately 2.5 h (range 1.75–8.5 h), compared to less than one minute in plasma. The half-life of Dyn A1–13 decreased markedly with age or age-associated processes (n=20, r2=0.498). Noncompartmental kinetic analysis in the absence or presence of enzyme inhibitors (leucinethiol 10 μM, captopril 100 μM and GEMSA 20 μM) suggested that Dyn A1–13 is mainly metabolized by carboxypeptidase to A1–12 (51%) and by aminopeptidases to A2–13 (35%). The generation of A1–6 (13%) was only detected under enzyme inhibition. The extent of conversion into the main metabolites did not follow an age-associated trend, thus over-all enzyme levels but no specific enzymatic systems are elevated with age.  相似文献   

12.
13.
p27Kip1 is a key cell-cycle regulator whose level is primarily regulated by the ubiquitin–proteasome degradation pathway. Its β1 subunit is one of seven β subunits that form the β-ring of the 20S proteasome, which is responsible for degradation of ubiquitinated proteins. We report here that the β1 subunit is up-regulated in oesophageal cancer tissues and some ovarian cancer cell lines. It promotes cell growth and migration, as well as colony formation. β1 binds and degrades p27Kip1directly. Interestingly, the lack of phosphorylation at Ser158 of the β1 subunit promotes degradation of p27Kip1. We therefore propose that the β1 subunit plays a novel role in tumorigenesis by degrading p27Kip1.  相似文献   

14.
15.
16.
17.
The A1Ao ATP synthase from archaea represents a class of chimeric ATPases/synthases, whose function and general structural design share characteristics both with vacuolar V1Vo ATPases and with F1Fo ATP synthases. The primary sequences of the two large polypeptides A and B, from the catalytic part, are closely related to the eukaryotic V1Vo ATPases. The chimeric nature of the A1Ao ATP synthase from the archaeon Methanosarcina mazei G?1 was investigated in terms of nucleotide interaction. Here, we demonstrate the ability of the overexpressed A and B subunits to bind ADP and ATP by photoaffinity labeling. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to map the peptide of subunit B involved in nucleotide interaction. Nucleotide affinities in both subunits were determined by fluorescence correlation spectroscopy, indicating a weaker binding of nucleotide analogues to subunit B than to A. In addition, the nucleotide-free crystal structure of subunit B is presented at 1.5 A resolution, providing the first view of the so-called non-catalytic subunit of the A1Ao ATP synthase. Superposition of the A-ATP synthase non-catalytic B subunit and the F-ATP synthase non-catalytic alpha subunit provides new insights into the similarities and differences of these nucleotide-binding ATPase subunits in particular, and into nucleotide binding in general. The arrangement of subunit B within the intact A1Ao ATP synthase is presented.  相似文献   

18.
A modified isolation procedure provides a homogeneous A(1)-ATPase from the archaeon Methanosarcina mazei G?1, containing the five subunits in stoichiometric amounts of A(3):B(3):C:D:F. A(1) obtained in this way was characterized by three-dimensional electron microscopy of single particles, resulting in the first three-dimensional reconstruction of an A(1)-ATPase at a resolution of 3.2 nm. The A(1) consists of a headpiece of 10.2 nm in diameter and 10.8 nm in height, formed by the six elongated subunits A(3) and B(3). At the bottom of the A(3)B(3) complex, a stalk of 3.0 nm in length can be seen. The A(3)B(3) domain surrounds a large cavity that extends throughout the length of the A(3)B(3) barrel. A part of the stalk penetrates inside this cavity and is displaced toward an A-B-A triplet. To investigate further the topology of the stalk subunits C-F in A(1), cross-linking has been carried out by using dithiobis[sulfosuccinimidylpropionate] (DSP) and 1-ethyl-3-(dimethylaminopropyl)-carbodiimide (EDC). In experiments where DSP was added the cross-linked products B-F, A(x)-D, A-B-D, and A(x)-B(x)-D were formed. Subunits B-F, A-D, A-B-D, and A-B-C-D could be cross-linked by EDC. The subunit-subunit interaction in the presence of DSP was also studied as a function of nucleotide binding, demonstrating movements of subunits C, D, and F during ATP cleavage. Finally, the three-dimensional organization of this A(1) complex is discussed in terms of the relationship to the F(1)- and V(1)-ATPases at a resolution of 3.2 nm.  相似文献   

19.
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1(KO) mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1(KO) mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ(1-42) was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.  相似文献   

20.
《Autophagy》2013,9(1):100-112
Autophagy is one of the main mechanisms in the pathophysiology of neurodegenerative disease. The accumulation of autophagic vacuoles (AVs) in affected neurons is responsible for amyloid-β (Aβ) production. Previously, we reported that SUMO1 (small ubiquitin-like modifier 1) increases Aβ levels. In this study, we explored the mechanisms underlying this. We investigated whether AV formation is necessary for Aβ production by SUMO1. Overexpression of SUMO1 increased autophagic activation, inducing the formation of LC3-II-positive AVs in neuroglioma H4 cells. Consistently, autophagic activation was decreased by the depletion of SUMO1 with small hairpin RNA (shRNA) in H4 cells. The SUMO1-mediated increase in Aβ was reduced by the autophagy inhibitors (3-methyladenine or wortmannin) or genetic inhibitors (siRNA targeting ATG5, ATG7, ATG12, or HIF1A), respectively. Accumulation of SUMO1, ATG12, and LC3 was seen in amyloid precursor protein transgenic mice. Our results suggest that SUMO1 accelerates the accumulation of AVs and promotes Aβ production, which is a key mechanism for understanding the AV-mediated pathophysiology of Alzheimer disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号