首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chloroplast photorelocation movement is extensively studied in C3 but not C4 plants. C4 plants have two types of photosynthetic cells: mesophyll and bundle sheath cells. Mesophyll chloroplasts are randomly distributed along cell walls, whereas bundle sheath chloroplasts are located close to the vascular tissues or mesophyll cells depending on the plant species. The cell-specific C4 chloroplast arrangement is established during cell maturation, and is maintained throughout the life of the cell. However, only mesophyll chloroplasts can change their positions in response to environmental stresses. The migration pattern is unique to C4 plants and differs from that of C3 chloroplasts. in this mini-review, we highlight the cell-specific disposition of chloroplasts in C4 plants and discuss the possible physiological significances.Key words: abscisic acid, aggregative movement, avoidance movement, blue light, bundle sheath cell, C4 plant, chloroplast, cytoskeleton, environmental stress, mesophyll cellChloroplasts can change their intracellular positions to optimize photosynthetic activity and/or reduce photodamage occurring in response to light irradiation. On treating with high-intensity light, the chloroplasts move away from the light to minimize photodamage (avoidance response). Meanwhile, on irradiating with low-intensity light, they move toward the light source to maximize photosynthesis (accumulation response). These chloroplast-photorelocation movements are observed in a wide variety of plant species from green algae to seed plants,13 although little attention has been paid to C4 plants. There is a report stating that monocotyledonous C4 plants showed changes in the light transmission of leaves in response to blue light,4 although the direction of migration of the chloroplasts is not described.C4 plants have two types of photosynthetic cells: mesophyll (M) cells and bundle sheath (BS) cells, which have numerous well-developed chloroplasts. BS cells surround the vascular tissues, while M cells encircle the cylinders of the BS cells (Fig. 1). The C4 dicarboxylate cycle of photosynthetic carbon assimilation is distributed between the two cell types, and acts as a CO2 pump to concentrate CO2 in the BS chloroplasts.5,6 C4 plants are divided into three subtypes on the basis of decarboxylating enzymes: NADP-malic enzyme (ME), NAD-ME and phosphoenolpyruvate carboxykinase. Although the M chloroplasts of all C4 species are randomly distributed along the cell walls, BS chloroplasts are located either in a centripetal (close to the vascular tissue) or in a centrifugal (close to M cells) position, depending on the species (Fig. 1A).7 Thus, C4 M and BS cells have different systems for chloroplast positioning: an M cell-specific system for dispersing chloroplasts and a BS cell-specific system for holding chloroplasts in a centripetal or centrifugal disposition.Open in a separate windowFigure 1The intracellular arrangement of chloroplasts in finger millet (Eleusine coracana), an NAD-ME-type C4 plant. (A) Light micrograph of a transverse section of a leaf blade from a control plant. Bundle sheath (BS) cells surround the vascular tissues, while mesophyll (M) cells encircle the cylinders of the BS cells. BS chloroplasts are well developed, and are located in a centripetal position, whereas M chloroplasts are randomly distributed along the cell walls. B, bundle sheath cell; M, mesophyll cell; V, vascular bundle. (B) Transverse section of a leaf blade from a drought-stressed plant. Most M chloroplasts are aggregatively distributed toward the BS side, while the centripetal arrangement of BS chloroplasts is unchanged. (C and D) Transverse sections of leaf segments irradiated with blue light of intensity 500 µmol m−2 s−1 with or without 30 µM ABA for 8 h (C and D, respectively). The adaxial side of each leaf section (upper side in the photograph) was illuminated. In the absence of ABA, M chloroplasts exhibited avoidance movement on the illuminated side and aggregative movement on the opposite side. In the presence of ABA, aggregative movement was observed on both sides. Scale bars = 50 µm.  相似文献   

3.
4.
5.
1. Mesophyll and parenchyma-sheath chloroplasts of maize leaves were separated by density fractionation in non-aqueous media. 2. An investigation of the distribution of photosynthetic enzymes indicated that the mesophyll chloroplasts probably contain the entire leaf complement of pyruvate,P(i) dikinase, NADP-specific malate dehydrogenase, glycerate kinase and nitrite reductase and most of the adenylate kinase and pyrophosphatase. The fractionation pattern of phosphopyruvate carboxylase suggested that this enzyme may be associated with the bounding membrane of mesophyll chloroplasts. 3. Ribulose diphosphate carboxylase, ribose phosphate isomerase, phosphoribulokinase, fructose diphosphate aldolase, alkaline fructose diphosphatase and NADP-specific ;malic' enzyme appear to be wholly localized in the parenchyma-sheath chloroplasts. Phosphoglycerate kinase and NADP-specific glyceraldehyde phosphate dehydrogenase, on the other hand, are distributed approximately equally between the two types of chloroplast. 4. After exposure of illuminated leaves to (14)CO(2) for 25sec., labelled malate, aspartate and 3-phosphoglycerate had similar fractionation patterns, and a large proportion of each was isolated with mesophyll chloroplasts. Labelled fructose phosphates and ribulose phosphates were mainly isolated in fractions containing parenchyma-sheath chloroplasts, and dihydroxyacetone phosphate had a fractionation pattern intermediate between those of C(4) dicarboxylic acids and sugar phosphates. 6. These results indicate that the mesophyll and parenchyma-sheath chloroplasts have a co-operative function in the operation of the C(4)-dicarboxylic acid pathway. Possible routes for the transfer of carbon from C(4) dicarboxylic acids to sugars are discussed.  相似文献   

6.
Xiao  Shuya  Liu  Yu  Wang  Anhu  Liu  Yaodong  Li  Xiaoyi  Liu  Zhibin  Li  Xufeng  Yang  Yi  Wang  Jianmei 《Molecular biology reports》2021,48(5):4341-4350
Molecular Biology Reports - Tartary buckwheat is a kind of plant which can be used as medicine as well as edible. Abscisic acid (ABA) signaling plays an important role in the response of plants...  相似文献   

7.
The effect of light irradiance on the amount of ATP synthase alpha-subunit in mesophyll (M) and bundle sheath (BS) chloroplasts of C(4) species such as maize (Zea mays L., type NADP-ME), millet (Panicum miliaceum, type NAD-ME) and guinea grass (Panicum maximum, type PEP-CK) was investigated in plants grown under high, moderate and low light intensities equal to 800, 350 and 50 micromol photons m(-2) s(-1), respectively. The results demonstrate that alpha-subunit of ATP synthase in both M and BS chloroplasts is altered by light intensity, but differently in the investigated species. Moreover, we identified two isoforms of the CF(1) alpha-subunit, called alpha and alpha. The CF(1) alpha-subunit was the major isoform and was present in all light conditions, whereas alpha was the minor isoform in low light. A strong increase in the level of the alpha-subunit in maize mesophyll and bundle sheath thylakoids was observed after 50 h of high light treatment. The alpha and alpha-subunits from investigated C(4) species displayed apparent molecular masses of 64 and 67 kDa, respectively, on SDS/PAGE. The presence of the alpha-subunit of ATPase was confirmed in isolated CF(1) complex, where it was recognized by antisera to the alpha-subunit. The N-terminal sequence of alpha-subunit is nearly identical to that of alpha. Our results indicate that both isoforms coexist in M and BS chloroplasts during plant growth at all irradiances. We suggest the existence in M and BS chloroplasts of C(4) plants of a mechanism(s) regulating the ATPase composition in response to light irradiance. Accumulation of the alpha isoform may have a protective role under high light stress against over protonation of the thylakoid lumen and photooxidative damage of PSII.  相似文献   

8.
S O Eun  Y Lee 《Plant physiology》1997,115(4):1491-1498
We recently showed that treatment with actin antagonists perturbed stomatal behavior in Commelina communis L. leaf epidermis and therefore suggested that dynamic changes in actin are necessary for signal responses in guard cells (M. Kim, P.K. Hepler, S.O. Eun, K.-S. Ha, Y. Lee [1995] Plant Physiol 109: 1077-1084). Here we show that actin filaments of guard cells, visualized by immunofluorescence microscopy, change their distribution in response to physiological stimuli. When stomata were open under white-light illumination, actin filaments were localized in the cortex of guard cells, arranged in a pattern that radiates from the stomatal pore. In marked contrast, for guard cells of stomata closed by darkness or by abscisic acid, the actin organization was characterized by short fragments randomly oriented and diffusely labeled along the pore site. Upon abscisic acid treatment, the radial pattern of actin arrays in the illuminated guard cells began to disintegrate within a few minutes and was completely disintegrated in the majority of labeled guard cells by 60 min. Unlike actin filaments, microtubules of guard cells retained an unaltered organization under all conditions tested. These results further support the involvement of actin filaments in signal transduction pathways of guard cells.  相似文献   

9.
Mesophyll suspension cultures of Zinnia elegans L. have been used extensively to investigate the development of tracheary elements. Here we have modified the culture conditions to promote cell expansion and inhibit tracheary element differentiation and cell division. Cell expansion, measured by computer image analysis, was stimulated by auxin ( α -naphthyleneacetic acid), cytokinin (N6-benzylaminopurine), gibberellic acid, brassinosteroid (24-epibrassinolide), and light, all of which are known to promote cell expansion in whole plants or excised organs. Whereas light stimulated cell expansion primarily during the first 48 h of culture, auxin, cytokinin, gibberellic acid and brassinosteroid had little effect until after 48 h. Treatments also differed in their relative effects on cell elongation and radial cell expansion. Light and cytokinin had a greater effect on radial cell expansion, auxin and epibrassinolide promoted only cell elongation, and gibberellic acid had nearly equal effects on expansion in both directions. We have also shown by combining treatments that the effects of cytokinin and auxin are additive. Neither hormone treatment, however, was additive with the effect of light treatment. Finally, in contrast to xylogenic cultures where expansion occurs by tip growth, cell expansion in non-differentiating cells was due to diffuse growth. These data show that cell expansion can be induced by hormones in primary mesophyll cultures from Zinnia in contrast to serially transferred plant suspension cultures. Furthermore, they indicate that auxin, cytokinin, and light induce cell expansion by different mechanisms in these cultures.  相似文献   

10.
Summary The stomata of detached leaves of Commelina communis L., Hordeum vulgare L., Zea mays L., Vicia faba L., Phaseolus vulgaris L. and Xanthium strumarium L. closed when xanthoxin (XAN) was added to the transpiration stream. XAN was approximately half as active as (+)-abscisic acid (ABA) at an equivalent concentration. XAN, like ABA, sensitized stomata of Xanthium strumarium to CO2. In contrast to ABA, XAN was ineffective in closing stomata of isolated epidermal strips of C. communis or V. faba. This may be because XAN added to the transpiration stream is converted to ABA during passage from the xylem to the epidermis.Abbreviations ABA Abscisic acid - XAN xanthoxin  相似文献   

11.
1. Mesophyll chloroplasts of the C4 plant Digitaria sanguinalis contain endogenous phosphoenolpyruvate which appears to distribute across the envelope according to the existing pH gradient. The phosphoenolpyruvate remaining in the stroma can be rapidly released by external inorganic phosphate or 3-phosphoglycerate while external pyruvate did not affect the distribution. 2. Phosphoenolpyruvate (PEP) was a competitive inhibitor (Ki (PEP) = 450 micrometer) of 32Pi uptake (Km(Pi)=200 micrometer) by chloroplasts in the dark and also reduced the steady-state internal concentration of 32Pi, which is consistent with phosphate and phosphoenolpyruvate sharing a common carrier. 3. Phosphoenolpyruvate formation by chloroplasts in the light in the presence of pyruvate but in the absence of inorganic phosphate was slow and the concentration ratio of phosphoenolpyruvate (internal/external) was high. Addition of 0.1 mM phosphate induced a high rate of phosphoenolpyruvate formation and the concentration ratio (internal/external) decreased 15-fold. It is proposed that external phosphate is required both for phosphoenolpyruvate formation and efflux from the chloroplast.  相似文献   

12.
As a first step towards understanding the process of blue light perception, and the signal transduction mechanisms involved, in Neurospora crassa we have used a pharmacological approach to screen a wide range of second messengers and chemical compounds known to interfere with the activity of well-known signal transducing molecules in vivo. We tested the influence of these compounds on the induction of the al-3 gene, a key step in light-induced carotenoid biosynthesis. This approach has implicated protein kinase C (PKC) as a component of the light transduction machinery. The conclusion is based on the effects of specific inhibitors (calphostin C and chelerythrine chloride) and activators of PKC (1,2-dihexanoyl-sn-glycerol). During vegetative growth PKC may be responsible for desensitization to light because inhibitors of the enzyme cause an increase in the total amount of mRNA transcribed after illumination. PKC is therefore proposed here to be an important regulator of transduction of the blue light signal, and may act through modification of the protein White Collar-1, which we show to be a substrate for PKC in N. crassa.  相似文献   

13.
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare 'Betzes'). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8'OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8'OH1 in dormancy release. Reduced HvABA8'OH1 expression in transgenic HvABA8'OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.  相似文献   

14.
The high light-induced switch in Clusia minor from C(3)-photosynthesis to Crassulacean acid metabolism (CAM) is fast (within a few days) and reversible. Although this C(3)/CAM transition has been studied intensively, the nature of the photoreceptor at the beginning of the CAM-induction signal chain is still unknown. Using optical filters that only transmit selected wavelengths, the CAM light induction of single leaves was tested. As controls the opposite leaf of the same leaf pair was studied in which CAM was induced by high unfiltered radiation (c. 2100 micromol m(-2) s(-1)). To evaluate the C(3)-photosynthesis/CAM transition, nocturnal CO(2) uptake, daytime stomatal closure and organic acid levels were monitored. Light at wavelengths longer than 530 nm was not effective for the induction of the C(3)/CAM switch in C. minor. In this case CAM was present in the control leaf while the opposite leaf continued performing C(3)-photosynthesis, indicating that CAM induction triggered by high light conditions is wavelength-dependent and a leaf internal process. Leaves subjected to wavelengths in the range of 345-530 nm performed nocturnal CO(2) uptake, (partial) stomatal closure during the day (CAM-phase III), and decarboxylation of citric acid within the first 2 d after the switch to high light conditions. Based on these experiments and evidence from the literature, it is suggested that a UV-A/blue light receptor mediates the light-induced C(3)-photosynthesis/CAM switch in C. minor.  相似文献   

15.
16.
17.
As a first step towards understanding the process of blue light perception, and the signal transduction mechanisms involved, in Neurospora crassa we have used a pharmacological approach to screen a wide range of second messengers and chemical compounds known to interfere with the activity of well-known signal transducing molecules in vivo. We tested the influence of these compounds on the induction of the al-3 gene, a key step in light-induced carotenoid biosynthesis. This approach has implicated protein kinase C (PKC) as a component of the light transduction machinery. The conclusion is based on the effects of specific inhibitors (calphostin C and chelerythrine chloride) and activators of PKC (1,2-dihexanoyl-sn-glycerol). During vegetative growth PKC may be responsible for desensitization to light because inhibitors of the enzyme cause an increase in the total amount of mRNA transcribed after illumination. PKC is therefore proposed here to be an important regulator of transduction of the blue light signal, and may act through modification of the protein White Collar-1, which we show to be a substrate for PKC in N. crassa. Received: 4 December 1998 / Accepted: 21 May 1999  相似文献   

18.
Gene expression in response to abscisic acid and osmotic stress.   总被引:85,自引:13,他引:85       下载免费PDF全文
K Skriver  J Mundy 《The Plant cell》1990,2(6):503-512
  相似文献   

19.
Summary The crustaceanDaphnia magna responds to a flash of light with a ventral rotation of its compound eye; this behavior is termed eye flick. We determined the spectral sensitivity for the threshold of eye flick in response to light flashes having three different spatial characteristics: (1) full-field, extending 180° from dorsal to ventral in the animal's field of view; (2) dorsal, 30° wide and located in the dorsal region of the visual field; (3) ventral, same as dorsal but located ventrally. All three stimuli extended 30° to the right and to the left of the animal's midplane. We found that spectral sensitivity varies with the spatial characteristics of the stimulus. For full-field illumination, the relative sensitivity was maximal at 527 nm and between 365 nm and 400 nm, with a significant local minimum at 420 nm. For the dorsal stimulus, the relative sensitivity was greatest at 400 nm, but also showed local maxima at 440 nm and 517 nm. For the ventral stimulus, the relative sensitivity maxima occurred at the same wavelengths as those for the full-field stimulus. At wavelengths of 570 nm and longer, the responses to both dorsal and ventral stimuli showed lower relative sensitivity than the full-field stimulus. No circadian or other periodic changes in threshold spectral sensitivity were observed under our experimental conditions. Animals which had their nauplius eyes removed by means of laser microsurgery had the same spectral sensitivity to full-field illumination as normal animals. Our results are discussed in terms of our current knowledge of the spectral classes of photoreceptors found in theDaphnia compound eye.  相似文献   

20.
In our recent paper in Plant Physiology, we have reported the identification and functional characterization of a unique regulator, SHW1, a serine-arginine-aspartate rich protein in Arabidopsis seedling development.1 Genetic and molecular analyses have revealed that SHW1 functions in an independent and interdependent manner with COP1, and differentially regulates photomorphogenic growth and light regulated gene expression. Here, we show the involvement of photoreceptors in the function of SHW1. Our results have further revealed that SHW1 is a common regulator of light and ABA signaling pathways. These results along with some data described in Plant Physiology paper have been discussed here in a broader perspective.Key words: light signaling, photomorphogenesis, SHW1, COP1, ABA responsePlants are exposed to various intensities and wavelengths of light with a specific wavelength of light being predominant at a particular daytime. For example, plants are exposed to varied intensities of light in the morning and noon, or far-red light being predominant in the twilight. However, plants have also evolved to respond to and subsequently tackle such variations in light quality or quantity by multiple modes of actions. One such mode of action might be to employ multiple negative regulatory proteins that function as filtering units to light intensity. These negative regulators could be operative in a specific wavelength of light or in a broad spectrum of light2. Identification and functional characterization of several negative regulators, including SHW1, of photomorphogenic growth support such notion. SHW1 does not seem to have a homologue in animal system or in lower eukaryotes, and thereby has evolved as a plant specific gene. When seedlings are exposed to light after reaching the soil surface, it is important to protect the emerging cotyledons from high intensity light that otherwise might get bleached and subsequently die. SHW1 is expressed in germinating seeds to flowering plants, and it is predominantly expressed in the photosynthetically active tissues.1 Therefore, SHW1 might function as a filtering unit not only in the case of emerging seedlings in the soil but also in the adult plants during dark to light transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号