首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic proteins (BMPs) are secreted signals that regulate apical ectodermal ridge (AER) functions and interdigital programmed cell death (PCD) of developing limb. However the identities of the intracellular mediators of these signals are unknown. To investigate the role of Smad proteins in BMP-regulated AER functions in limb development, we inactivated Smad1 and Smad5 selectively in AER and ventral ectoderm of developing limb, using Smad1 or/and Smad5 floxed alleles and an En1(Cre/+) knock-in allele. Single inactivation of either Smad1 or Smad5 did not result in limb abnormalities. However, the Smad1/Smad5 double mutants exhibited syndactyly due to a reduction in interdigital PCD and an increase in interdigital cell proliferation. Cell tracing experiments in the Smad1/Smad5 double mutants showed that ventral ectoderm became thicker and the descendents of ventral En1(Cre/+) expressing ectodermal cells were located at dorsal interdigital regions. At the molecular level, Fgf8 expression was prolonged in the interdigital ectoderm of embryonic day (E) 13 Smad1/Smad5 double mutants, suggesting that the ectopic Fgf8 expression may serve as a survival signal for interdigital epithelial and mesenchymal cells. Our result suggests that Smad1 and Smad5 are required and function redundantly as intracellular mediators for BMP signaling in the AER and ventral ectoderm. Smad1/Smad5 signaling in the AER and ventral ectoderm regulates interdigital tissue regression of developing limb. Our mutants with defects in interdigital PCD could also serve as a valuable model for investigation of PCD regulation machinery.  相似文献   

2.
In vertebrate limbs that lack webbing, the embryonic interdigit region is removed by programmed cell death (PCD). Established models suggest that bone morphogenetic proteins (BMPs) directly trigger such PCD, although no direct genetic evidence exists for this. Alternatively, BMPs might indirectly affect PCD by regulating fibroblast growth factors (FGFs), which act as cell survival factors. Here, we inactivated the mouse BMP receptor gene Bmpr1a specifically in the limb bud apical ectodermal ridge (AER), a source of FGF activity. Early inactivation completely prevents AER formation. However, inactivation after limb bud initiation causes an upregulation of two AER-FGFs, Fgf4 and Fgf8, and a loss of interdigital PCD leading to webbed limbs. To determine whether excess FGF signaling inhibits interdigit PCD in these Bmpr1a mutant limbs, we performed double and triple AER-specific inactivations of Bmpr1a, Fgf4 and Fgf8. Webbing persists in AER-specific inactivations of Bmpr1a and Fgf8 owing to elevated Fgf4 expression. Inactivation of Bmpr1a, Fgf8 and one copy of Fgf4 eliminates webbing. We conclude that during normal embryogenesis, BMP signaling to the AER indirectly regulates interdigit PCD by regulating AER-FGFs, which act as survival factors for the interdigit mesenchyme.  相似文献   

3.
Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ). The present study found that the Smad8 expression pattern in the anterior mesoderm of the hindlimb is very similar to that observed in limbs stained to detect cell death. Also, BMPs and retinoic acid, which act as apoptosis-promoting factors, induced expression of Smad8 before the onset of cell death, while sonic hedgehog protein, acting as a survival factor, inhibited Smad8 expression in the ANZ. However, although there was correlation between Smad8 expression patterns and PCD in the ANZ, phosphorylated forms of SMAD1/5/8 and TUNEL staining did not co-localize in dying cells. Interestingly, a short pulse of BMP was sufficient to trigger cell death. On the other hand, most dying cells were located in the avascular region, while many cells expressing Smad8 were located in the vascular region of the ANZ. These results suggest that BMPs mediated by SMAD signaling activate a molecular cascade that culminates in PCD.  相似文献   

4.
Apoptotic cell death in the developing limb of mouse fetuses was examined sequentially on days 11–15 of gestation by means of Nile blue (NB) sulfate staining with special reference to its relation to limb morphogenesis. With some exceptions, programmed cell death (PCD) in the hand and foot was observed in the mesenchyme but not in the surface ectoderm. We found that during digital formation PCD begins at the proximal portion of the interdigital mesenchyme and subsequently expands distally. Therefore, the initial PCD that occurs in the interdigital zones may determine the proximal ends of digital separation and also contribute to the demarcation between the palm (sole) and digits (toes). During digital separation, the areas of PCD in the interdigital zones were found to become larger and expand distally on day 13, which may be necessary for the separation of digits and for determining the interdigital area to disappear. PCD in presumptive phalangeal joints was also found to proceed from proximal to more distal joints. The PCD in presumptive joints may be required for the separation of phalanges and metacarpal (metatarsal) bones and for the formation of joint cavities. In addition, intense PCD was observed in the radial (tibial) and ulnar (fibular) margins of the hand and foot plates for 4–5 days. Such PCD at marginal areas seems to prevent the formation of supernumerary digits (preaxial and postaxial polydactyly) and other digital malformations. Therefore, the timing when PCD commences and ends, the sites where PCD occurs, and the intensity, duration, and proximo-distal progress of PCD appear to be genetically determined, and the elimination of unnecessary cells by PCD may be essential for normal limb morphogenesis. The present findings also suggest that the normal progress of PCD in the hand and foot plates of rodent fetuses may prevent the formation of some limb malformations such as webbing fusion of digits, polydactyly, or cleft hand/foot. © 1996 Wiley-Liss, Inc.  相似文献   

5.
During limb formation massive cell death in the mesenchyme of the interdigital spaces accompanies the formation of free digits. Members of the transforming growth factor beta (TGF-) superfamily were discussed to play a key role in cell-cell interactions, important in the regulation of programmed cell death (PCD). TGF-beta itself is believed to be involved in epithelial-mesenchymal interactions. Here, we demonstrate that PCD is significantly reduced in interdigital spaces of the developing limbs of Tgfbeta2-/-Tgfbeta3-/- double knockouts. The regression of interdigital webs seems to be doses-dependent as interdigital mesenchyme is at least partly reduced in Tgfbeta2-/-Tgfbeta3+/- mutants, whereas interdigital zones of Tgfbeta2-/-Tgfbeta3-/- double knockouts reveal only minimal signs of regression. We conclude that TGF- is a critical extrinsic regulator of PCD.  相似文献   

6.
Physiological cell death is a key mechanism that ensures appropriate development and maintenance of tissues and organs in multicellular organisms. Most structures in the vertebrate embryo exhibit defined areas of cell death at precise stages of development. In this regard the areas of interdigital cell death during limb development provide a paradigmatic model of massive cell death with an evident morphogenetic role in digit morphogenesis. Physiological cell death has been proposed to occur by apoptosis, cellular phenomena genetically controlled to orchestrate cell suicide following two main pathways, cytochrome C liberation from the mitochondria or activation of death receptors. Such pathways converge in the activation of cysteine proteases known as caspases, which execute the cell death program, leading to typical morphologic changes within the cell, termed apoptosis. According to these findings it would be expected that caspases loss of function experiments could cause inhibition of interdigital cell death promoting syndactyly phenotypes. A syndactyly phenotype is characterized by absence of digit freeing during development that, when caused by absence of interdigital cell death, is accompanied by the persistence of an interdigital membrane. However this situation has not been reported in any of the KO mice or chicken loss of function experiments ever performed. Moreover histological analysis of dying cells within the interdigit reveals the synchronic occurrence of different types of cell death. All these findings are indicative of caspase alternative and/or complementary mechanisms responsible for physiological interdigital cell death. Characterization of alternative cell death pathways is required to explain vertebrate morphogenesis. Today there is great interest in cell death via autophagy, which could substitute or act synergistically to the apoptotic pathway. Here we discuss what is known about physiological cell death in the developing interdigital tissue of vertebrate embryos, paying special attention to the avian species.  相似文献   

7.
We have investigated the role of FGFs in the control of programmed cell death during limb development by analyzing the effects of increasing and blocking FGF signaling in the avian limb bud. BMPs are currently considered as the signals responsible for cell death. Here we show that FGF signaling is also necessary for apoptosis and that the establishment of the areas of cell death is regulated by the convergence of FGF- and BMP-mediated signaling pathways. As previously demonstrated, cell death is inhibited for short intervals (12 hours) after administration of FGFs. However, this initial inhibition is followed (24 hours) by a dramatic increase in cell death, which can be abolished by treatments with a BMP antagonist (Noggin or Gremlin). Conversely, blockage of FGF signaling by applying a specific FGF-inhibitor (SU5402) into the interdigital regions inhibits both physiological cell death and that mediated by exogenous BMPs. Furthermore, FGF receptors 1, 2 and 3 are expressed in the autopodial mesoderm during the regression of the interdigital tissue, and the expression of FGFR3 in the interdigital regions is regulated by FGFs and BMPs in the same fashion as apopotosis. Together our findings indicate that, in the absence of FGF signaling BMPs are not sufficient to trigger apoptosis in the developing limb. Although we provide evidence for a positive influence of FGFs on BMP gene expression, the physiological implication of FGFs in apoptosis appears to result from their requirement for the expression of genes of the apoptotic cascade. We have identified MSX2 and Snail as candidate genes associated with apoptosis the expression of which requires the combined action of FGFs and BMPs.  相似文献   

8.
Digit and interdigit (D/ID) development is one of the important research fields in molecular developmental biology. Interdigital cell death (ICD) is a morphogenetic event which has been considered as an essential process for D/ID formation. Although some growth factors including Bmp and Fgf signaling can modulate ICD, growth factor crosstalk regulating ICD is poorly understood. Wnt canonical pathway and Bmp signal crosstalk has been considered as the essential growth factor crosstalk in organogenesis. To elucidate the crosstalk to regulate the D/ID formation, we analyzed conditional mutant mice with limb bud ectoderm expressing constitutively activated β-catenin signaling. We showed that modulation of Wnt/β-catenin signal in the limb ectoderm including the AER regulates ID apoptosis. We also demonstrated that Wnt/β-catenin signaling in the ectoderm can positively regulate Fgf8 possibly antagonizing the epithelial derived Bmp signaling. Human birth defects for digit abnormalities have been known to be affected by multiple parameters. Elucidation of the potential mechanisms underlying such D/ID development is an urgent medical issue to be solved. This work would be one of the first studies showing essential growth factor cascades in the D/ID formation.  相似文献   

9.
During the hand plate development, the processes of cell differentiation and control of cell death are relevant to ensure a correct shape of the limb. The progenitor cell pool that later will differentiate into cartilage to form the digits arises from undifferentiated mesenchymal cells beneath the apical ectodermal ridge (AER). Once these cells abandon the area of influence of signals from AER and ectoderm, some cells are committed to chondrocyte lineage forming the digital rays. However, if the cells are not committed to chondrocyte lineage, they will form the prospective interdigits that in species with free digits will subsequently die. In this work, we provide the overview of the molecular interactions between different signaling pathways responsible for the formation of digit and interdigit regions. In addition, we briefly describe some experiments concerning the most important signals responsible for promoting cell death. Finally, on the basis that the interdigital tissue has chondrogenic potential, we discuss the hypothesis that apoptotic-promoting signals might also act as antichondrogenic factors and chondrogenic factors might operate as anti-apoptotic factors.  相似文献   

10.
In the developing chick leg bud, massive programmed cell death occurs in the interdigital region. Previously, we reported the inhibition of cell death by separation of the interdigital region from neighboring digit cartilage. In this study, we examined the relationship between cell death and cartilaginous tissue in vitro. First, cell fate was observed with DiI that was used to examine cell movement in the distal tip of leg bud. Labeled cells in the prospective digital region were distributed only in the distal region as a narrow band, while cells in the prospective interdigital region expanded widely in the interdigit. In coculture of monolayer cells and a cell pellet tending to differentiate into cartilage, monolayer cells migrated into the cell pellet. These results suggested that digit cartilage tends to recruit neighboring cells into the cartilage during limb development. Next, we observed the relationship between cell death and chondrogenesis in monolayer culture. Apoptotic cell death that could be detected by TUNEL occurred in regions between cartilaginous nodules in mesenchymal cell culture. More apoptotic cell death was detected in the cell culture of leg bud mesenchyme of stage 25/26 than that of leg bud mesenchyme of stage 22 or that of stage 28. The most developed cartilaginous nodules were observed in the cell culture of stage 25/26. Finally, we observed Bmp expression in vitro and in vivo. Bmp-2, Bmp-4 and Bmp-7 were detected around the cartilage nodules. When the interdigit was separated from neighboring digit cartilage, Bmp-4 expression disappeared near the cut region but remained near the digit cartilage. This correlation between cell death and cartilaginous region suggests that cartilage tissue can induce apoptotic cell death in the developing chick limb bud due to cell migration accompanying chondrogenesis and Bmp expression.  相似文献   

11.
The prevalence of clinical phenotypes that exhibit combinations of central polydactyly, syndactyly, or cleft hand or foot is higher than would be expected for random independent mutations. We have previously demonstrated that maternal ingestion of a chemotherapeutic agent, busulfan, at embryonic day 11 (E11) induces these defects in various combinations in rat embryo limbs. In an effort to determine the mechanism by which busulfan disrupts digital development, we examined cell death by Nile Blue staining and TdT-mediated dUTP nick end labeling (TUNEL) assays; we also carried out whole mount in situ hybridization for fibroblast growth factor-8 (Fgf8), bone morphogenetic protein-4 (Bmp4), and sonic hedgehog (Shh) to examine developmental pathways linked to these defects. In busulfan-treated embryos, diffuse cell death was evident in both ectoderm and mesoderm, peaking at E13. The increased cell death leads to regression of Fgf8 in the apical ectodermal ridge (AER) and Bmp4 and Shh in the underlying mesoderm. The subsequent pattern of interdigital apoptosis and cartilage condensation was variably disrupted. These results suggest that busulfan manifests its teratogenic effects by inducing cell death of both ectoderm and mesoderm, with an associated reduction in tissue and a disruption in the generation of patterning molecules during critical periods of digit specification.  相似文献   

12.
Interdigital tissue regression during embryonic development is one of the most representative model systems of morphogenetic cell death, but the degenerative cascade accounting for this process awaits clarification. Although the canonical apoptotic caspase pathway appears to be activated in the interdigital mesenchyme committed to die, neither genetic nor chemical blockage of caspases or their downstream effectors, is sufficient to prevent cell death. Hence, alternative and/or complementary dying pathways must also be responsible for this degenerative process. In this work we have chosen to study the endonucleases during the regression of the interdigital tissue of avian embryos to gain insights into the molecular mechanisms accounting for programmed cell death in this system. We show that caspase activated DNase, which is a neutral DNase associated with the caspase apoptotic pathway, appears to be the main endonuclease only at an initial phase of interdigit regression. However at peak stages of the degenerative process, the acidic DNases L-DNase II and lysosomal DNase IIB become predominant in the system and markers for cell autophagy become moderately up-regulated. Consistent with the activation of acidic endonucleases we observed that microenvironmental pH value in the interdigits decreased to levels only appropriate for acidic enzymes. Furthermore, we found that overexpression of lysosomal DNase IIB in embryonic limb mesoderm promoted cell death, which was also accompanied by up-regulation and activation of L-DNase II. Up-regulation of acidic DNases was maintained in interdigits explanted to culture dishes, where the participation of exogenous professional phagocytes of hematopoietic origin is avoided. Finally, and consistent with all our findings, up-regulation of acidic DNases was much reduced in the webbed interdigits of duck embryos, characterized by a rudimentary interdigital degenerative process. We conclude that the regression of the interdigital tissue involves a coordinated and sequential activation of the caspase and lysosomal degenerative molecular cascades.  相似文献   

13.
Programmed cell death in the developing limb   总被引:4,自引:0,他引:4  
The sculpturing of shape in the developing limb together with the regression of the tail in anuran tadpoles constitute, perhaps, the most paradigmatic processes of programmed cell death. The study of these model systems has been of fundamental importance to support the idea that cell death is a physiological behavior of cells in multicellular organisms. Furthermore, different experimental approaches, including comparative analyses of the pattern of cell death in different avian species (i.e. chick interdigits versus duck interdigital webs) and in chick mutants with different limb phenotypes, provided the first evidence for the occurrence of a genetic program underlying the control of cell death. Two well known research groups in the field of limb development, the USA group headed first by John Saunders and next by John Fallon and the group of Donald Ede and Richard Hinchliffe in the U.K. provided a remarkable contribution to this topic. In spite of the historical importance of the developing limb in establishing the concept of programmed cell death, this model system of tissue regression has been largely neglected in recent studies devoted to the analysis of the molecular control of self-induced cell death (apoptosis). However, a considerable amount of information concerning this topic has been obtained in the last few years. Here we will review current information on the control of limb programmed cell death in an attempt to stimulate further molecular studies of this process of tissue regression.  相似文献   

14.
Fates of digits in amniotes, i.e., free or webbed digits, are determined by the size of programmed interdigital cell death (ICD) area. However, no (or very few) cell death has thus far been observed in developing limb buds of non-amniotic terrestrial vertebrates including other anuran or urodela amphibians. We speculate that the undetectable situation of amphibian ICD is the result of their less frequency due to slow developmental speed characteristic to most amphibian species. Here, we present three strategies for detecting difficult-to-find ICD in the frog, Xenopus laevis. (1) Addition of triiodo-L-thyronine (T(3)) accelerated two to three times the limb development and increased two to four times the appearance frequency of vital dye-stainable cells in limb buds of the accelerated tadpoles (stage 54 to 55). (2) Application of human bone morphogenetic protein-4 to the autopods of tadpoles at stage 53 to 54 enhanced digital cartilage formation and induced vital dye-stainable cells around the enhanced digital cartilages within 2 d. (3) In cell culture, T(3) increased the chondrogenic and cell death activities of limb mesenchymal cells. The augmentation of both activities by T(3) was stronger in the forelimb cells than in the hindlimb cells. This situation is well coincided with the limb fates of non-webbed forelimbs and webbed hindlimbs in X. laevis adulthood. Collectively, all three approaches showed that it become possible to detect X. laevis ICD with appropriate strategies.  相似文献   

15.
《The Journal of cell biology》1996,133(5):1041-1051
In the accompanying paper by Weil et al. (1996) we show that staurosporine (STS), in the presence of cycloheximide (CHX) to inhibit protein synthesis, induces apoptotic cell death in a large variety of nucleated mammalian cell types, suggesting that all nucleated mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD). The reliability of that conclusion depends on the evidence that STS-induced, and (STS + CHS)-induced, cell deaths are bona fide examples of PCD. There is rapidly accumulating evidence that some members of the Ced-3/Interleukin-1 beta converting enzyme (ICE) family of cysteine proteases are part of the basic machinery of PCD. Here we show that Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a cell-permeable, irreversible, tripeptide inhibitor of some of these proteases, suppresses STS-induced and (STS + CHX)-induced cell death in a wide variety of mammalian cell types, including anucleate cytoplasts, providing strong evidence that these are all bona fide examples of PCD. We show that the Ced-3/ICE family member CPP32 becomes activated in STS- induced PCD, and that Bcl-2 inhibits this activation. Most important, we show that, in some cells at least, one or more CPP32-family members, but not ICE itself, is required for STS-induced PCD. Finally, we show that zVAD-fmk suppresses PCD in the interdigital webs in developing mouse paws and blocks the removal of web tissue during digit development, suggesting that this inhibition will be a useful tool for investigating the roles of PCD in various developmental processes.  相似文献   

16.
The developing limb serves as a paradigm for studying pattern formation and morphogenetic cell death. Here, we show that conditional deletion of N-Myc (Mycn) in the developing mouse limb leads to uniformly small skeletal elements and profound soft-tissue syndactyly. The small skeletal elements are associated with decreased proliferation of limb bud mesenchyme and small cartilaginous condensations, and syndactyly is associated with a complete absence of interdigital cell death. Although Myc family proteins have pro-apoptotic activity, N-Myc is not expressed in interdigital cells undergoing programmed cell death. We provide evidence indicating that the lack of interdigital cell death and associated syndactyly is related to an absence of interdigital cells marked by expression of Fgfr2 and Msx2. Thus, instead of directly regulating interdigital cell death, we propose that N-Myc is required for the proper generation of undifferentiated mesenchymal cells that become localized to interdigital regions and trigger digit separation when eliminated by programmed cell death. Our results provide new insight into mechanisms that control limb development and suggest that defects in the formation of N-Myc-dependent interdigital tissue may be a root cause of common syndromic forms of syndactyly.  相似文献   

17.
Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.  相似文献   

18.
Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process.  相似文献   

19.
Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S-transferase-cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号