首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-blockade results in rapid glucose clearance and premature fatigue during exercise. To investigate the cause of this increased glucose clearance, we studied the acute effects of propranolol on insulin-stimulated muscle glucose uptake during contraction in the presence of epinephrine with an isolated rat muscle preparation. Glucose uptake increased in both fast- (epitrochlearis) and slow-twitch (soleus) muscle during insulin or contraction stimulation. In the presence of 24 nM epinephrine, glucose uptake during contraction was completely suppressed when insulin was present. This suppression of glucose uptake by epinephrine was accompanied by a decrease in insulin receptor substrate (IRS)-1-phosphatidylinositol 3 (PI3)-kinase activity. Propranolol had no direct effect on insulin-stimulated glucose uptake during contraction. However, epinephrine was ineffective in attenuating insulin-stimulated glucose uptake during contraction in the presence of propranolol. This ineffectiveness of epinephrine to suppress insulin-stimulated glucose uptake during contraction occurred in conjunction with its inability to completely suppress IRS-1-PI3-kinase activity. Results of this study indicate that the effectiveness of epinephrine to inhibit insulin-stimulated glucose uptake during contraction is severely diminished in muscle exposed to propranolol. Thus the increase in glucose clearance and premature fatigue associated with beta-blockade could result from the inability of epinephrine to attenuate insulin-stimulated muscle glucose uptake.  相似文献   

2.
Skeletal muscle glucose uptake requires delivery of glucose to the sarcolemma, transport across the sarcolemma, and the irreversible phosphorylation of glucose by hexokinase (HK) inside the cell. Here, a novel method was used in the conscious rat to address the roles of these three steps in controlling the rate of glucose uptake in soleus, a muscle comprised of type I fibers, and two muscles comprised of type II fibers. Experiments were performed on conscious rats under basal conditions or during hyperinsulinemic euglycemic clamps. Rats received primed, constant infusions of 3-O-methyl-[3H]glucose (3-O-MG) and [1-14C]mannitol. Total muscle glucose concentration and the steady-state ratio of intracellular to extracellular 3-O-MG concentration, which distributes based on the transsarcolemmal glucose gradient (TSGG), were used to calculate glucose concentrations at the inner and outer sarcolemmal surfaces ([G](im) and [G](om), respectively) in muscle. Muscle glucose uptake was much lower in muscle comprised of type II fibers than in soleus under both basal and insulin-stimulated conditions. Under all conditions, the TSGG in type II muscle exceeded that in soleus, indicating that glucose transport plays a more important role to limit glucose uptake in type II muscle. Although hyperinsulinemia increased [G](im) in soleus, indicating that phosphorylation was a limiting factor, type II muscle was limited primarily by glucose delivery and glucose transport. In conclusion, the relative importance of glucose delivery, transport, and phosphorylation in controlling the rate of insulin-stimulated muscle glucose uptake varies between muscle fiber types, with glucose delivery and transport being the primary limiting factors in type II muscle.  相似文献   

3.
5-Aminoimidazole-4-carboxamide ribonucleoside (AICAR) reportedly activates AMP-activated protein kinase (AMPK) and stimulates glucose uptake by skeletal muscle cells. In this study, we investigated the role of AMPK in AICAR-induced glucose uptake by 3T3-L1 adipocytes and rat soleus muscle cells by overexpressing wild-type and dominant negative forms of the AMPKalpha2 subunit by use of adenovirus-mediated gene transfer. Overexpression of the dominant negative mutant had no effect on AICAR-induced glucose transport in adipocytes, although AMPK activation was almost completely abolished. This suggests that AICAR-induced glucose uptake by 3T3-L1 adipocytes is independent of AMPK activation. By contrast, overexpression of the dominant negative AMPKalpha2 mutant in muscle markedly suppressed both AICAR-induced glucose uptake and AMPK activation, although insulin-induced uptake was unaffected. Overexpression of the wild-type AMPKalpha2 subunit significantly increased AMPK activity in muscle but did not enhance glucose uptake. Thus, although AMPK activation may not, by itself, be sufficient to increase glucose transport, it appears essential for AICAR-induced glucose uptake in muscle.  相似文献   

4.
Increased glucose transporter (GLUT4) protein expression in hyperthyroidism   总被引:2,自引:0,他引:2  
We have studied skeletal muscle glucose uptake by perfused hindquarter preparations from rats treated with thyroxine. Basal glucose uptake (in the absence of insulin) was approximately 2 fold higher in muscle of hyperthyroid rats compared to controls. Insulin (10(-7) M) stimulated glucose uptake 4.0 and 6.8 fold in the 10 day and 30 day controls rats, respectively. Maximal glucose uptake (10(-7) M insulin) was not different in control and hyperthyroid rats and thus insulin responsiveness in the hyperthyroid animals was reduced to 2.5 fold stimulation. The abundance of the insulin-sensitive glucose transporter protein (muscle/fat, GLUT-4), measured by Western blot analysis using polyclonal antisera, was higher in skeletal muscle from both groups of hyperthyroid rats. These studies indicate that thyroid hormones increase basal glucose uptake in skeletal muscle and this is due, at least in part, to an increment of GLUT-4 isoform. Increased expression of muscle glucose transporter proteins may be responsible for the increased peripheral glucose utilization seen in hyperthyroidism.  相似文献   

5.
Glucose uptake by mammalian skeletal muscle has been extensively covered in the literature, whereas the uptake of glucose by avian skeletal muscle has yet to be examined. As skeletal muscle provides the majority of postprandial glucose uptake in mammals, this study was designed to characterize the glucose transport mechanisms and glycogen content of avian skeletal muscle. In addition, plasma glucose levels were measured. English sparrow extensor digitorum communis (EDC) skeletal muscles were used for this study to quantify in vitro radiolabeled-glucose uptake. Uptake of labeled glucose was shown to decrease in the presence of increasing unlabeled glucose and was maximal by 60 minutes of incubation. Various agents known to increase glucose transport in mammalian tissues, via the insulin and contraction-responsive pathways, were used to manipulate and characterize in vitro transport in birds. The typical effectors of the mammalian insulin pathway, insulin (2 ng/ml) and insulin-like growth factor-1 (48 ng/ml), did not increase skeletal muscle glucose transport. Likewise, inducers of the mammalian contraction-responsive pathway had no effect on glucose transport by in vitro avian skeletal muscle (5 mM caffeine, 2 mM AICAR (5'-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). Interestingly, 200 microM phloretin, an agent used to block glucose transport proteins, significantly inhibited its uptake (P<0.001). These results suggest that a glucose transporter is responsible for glucose uptake by avian skeletal muscle, albeit at unexpectedly low levels, considering the high plasma glucose concentrations (265.9+/-53.5 mg/dl) and low skeletal muscle glycogen content (9.1+/-4.11 nM glucose/mg) of English sparrows.  相似文献   

6.
During the life span, phenotypic and structural modifications on skeletal muscle contribute to a reduction on glucose uptake either in basal state or triggered by insulin, but the underlying mechanisms for this decline are not entirely identified. A reduction in the expression of skeletal muscle glucose transporters (GLUTs), glucose transporter type 1 (GLUT1) and glucose transporter type 4 (GLUT4), has been associated to such phenomena, but unlike the case of insulin, only few studies have addressed the effect of age on muscle-contraction-induced glucose uptake. The aim of the study was to investigate the influence of age on GLUT1 and GLUT4 expression in skeletal muscle and its relation to the glucose uptake induced by muscle contraction. For this purpose, soleus muscle from Wistar rats aged 4, 10, 22 and 42 weeks were isolated and electrically stimulated (30 min, 10 Hz, 20 V, 0.2 ms). After stimulation, glucose uptake and GLUT1 and GLUT4 expression and localisation were evaluated. Muscle contraction caused an increase in glucose uptake in all studied groups. In addition, the absolute rates of glucose uptake were negatively correlated with age. The expression of GLUT4 was lower in older animals, whereas no relation between age and GLUT1 expression was found. Immunohistochemistry confirmed the ontogenic effect on GLUT4 expression and suggested an age-related modification on GLUT1 distribution within the muscle fibres; for instance, this protein seems to be present mainly out of the sarcoplasm. The present findings demonstrate that the ability of muscle contraction to increase glucose uptake is not influenced by age, whereas glucose uptake under basal conditions decreases with age.  相似文献   

7.
Contraction and insulin increase glucose uptake in skeletal muscle. While the insulin pathway, better characterized, requires activation of phosphoinositide 3‐kinase (PI3K) and atypical protein kinase (aPKC), muscle contraction seems to share insulin‐activated components to increase glucose uptake. This study aimed to investigate the interrelation between the pathway involved in glucose uptake evoked by insulin and muscle contraction. Isolated muscle of rats was treated with solvent (control), insulin, wortmannin (PI3K inhibitor) and the combination of insulin plus wortmannin. After treatment, muscles were electrically stimulated (contracted) or remained at rest. Glucose transporter 4 (GLUT4) localization, glucose uptake and phospho‐aPKC (aPKC activated form) were assessed. Muscle contraction and insulin increased glucose uptake in all conditions when compared with controls not stimulating an effect that was accompanied by an increase in GLUT4 and of phospho‐aPKC at the muscle membrane. Contracted muscles treated with insulin did not show additive effects on glucose uptake or aPKC activity compared with the response when these stimuli were applied alone. Inhibition of PI3K blocked insulin effect on glucose uptake and aPKC but not in the contractile response. Thus, muscle contraction seems to stimulate aPKC and glucose uptake independently of PI3K. Therefore, aPKC may be a convergence point and a rate limit step in the pathway by which, insulin and contraction, increase glucose uptake in skeletal muscle. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
1. The interaction of insulin and isometric exercise on glucose uptake by skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin, 10 m-i.u./ml, added to the perfusate, increased glucose uptake more than 10-fold, from 0.3-0.5 to 5.2-5.4 mumol/min per 30g of muscle in hindquarters of fed and 48h-starved rats respectively. In contrast, it did not stimulate glucose uptake in hindquarters from rats in diabetic ketoacidosis. 3. In the absence of added insulin, isometric exercise, induced by sciatic-nerve stimulation, increased glucose uptake to 4 and 3.4 mumol/min per 30g of muscle in fed and starved rats respectively. It had a similar effect in rats with moderately severe diabetes, but it did not increase glucose uptake in rats with diabetic ketoacidosis or in hindquarters of fed rats that had been "washed out" with an insulin-free perfusate. Insulin, at concentrations which did not stimulate glucose uptake in resting muscle, restored the stimulatory effect of exercise in these situations. 4. The stimulation of glucose uptake by exercise was independent of blood flow and the degree of tissue hypoxia; also it could not be reproduced by perfusing resting muscle with a medium previously used in an exercise experiment. 5. At rest glucose was not detectable in muscle cell water of fed and starved rats even when perfused with insulin. In the presence of insulin, a small accumulation of glucose, 0.25 mM, was noted in the muscle of ketoacidotic diabetic rats, suggesting inhibition of glucose phosphorylation, as well as of transport. 6. During exercise, the calculated intracellular concentration of glucose in the contracting muscle increased to 1.1-1.6mM in the fed, starved and moderately diabetic groups. Insulin significantly increased the already high rates of glucose uptake by the hindquarters of these animals but it did not alter the elevated intracellular concentration of glucose. 7. In severely diabetic rats, exercise did not cause glucose to accumulate in the cell in the absence of insulin. In the presence of insulin, it increased glucose uptake to 6.1 mumol/min per 30g of muscle and intracellular glucose to 0.72 mM. 8. The data indicate that the stimulatory effect of exercise on glucose uptake requires the presence of insulin. They suggest that in the absence of insulin, glucose uptake is not enhanced by exercise owing to inhibition of glucose transport into the cell.  相似文献   

9.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

10.
The ability of glucose and insulin to modify insulin-stimulated glucose transport and uptake was investigated in perfused skeletal muscle. Here we report that perfusion of isolated rat hindlimbs for 5 h with 12 mM-glucose and 20,000 microunits of insulin/ml leads to marked, rapidly developing, impairment of insulin action on muscle glucose transport and uptake. Thus maximal insulin-stimulated glucose uptake at 12 mM-glucose decreased from 34.8 +/- 1.9 to 11.5 +/- 1.1 mumol/h per g (mean +/- S.E.M., n = 10) during 5 h perfusion. This decrease in glucose uptake was accompanied by a similar change in muscle glucose transport as measured by uptake of 3-O-[14C]-methylglucose. Simultaneously, muscle glycogen stores increased to 2-3.5 times initial values, depending on fibre type. Perfusion for 5 h in the presence of glucose but in the absence of insulin decreased subsequent insulin action on glucose uptake by 80% of the effect of glucose with insulin, but without an increase in muscle glycogen concentration. Perfusion for 5 h with insulin but without glucose, and with subsequent addition of glucose back to the perfusate, revealed glucose uptake and transport similar to initial values obtained in the presence of glucose and insulin. The data indicate that exposure to a moderately increased glucose concentration (12 mM) leads to rapidly developing resistance of skeletal-muscle glucose transport and uptake to maximal insulin stimulation. The effect of glucose is enhanced by simultaneous insulin exposure, whereas exposure for 5 h to insulin itself does not cause measurable resistance to maximal insulin stimulation.  相似文献   

11.
Studies in which GLUT4 has been overexpressed in transgenic mice provide definitive evidence that glucose transport is rate limiting for muscle glucose disposal. Transgenic overexpression of GLUT4 selectively in skeletal muscle results in increased whole body glucose uptake and improves glucose homeostasis. These studies strengthen the hypothesis that the level of muscle GLUT4 affects the rate of whole body glucose disposal, and underscore the importance of GLUT4 in skeletal muscle for maintaining whole body glucose homeostasis. Studies in which GLUT4 has been ablated or 'knocked-out' provide proof that GLUT4 is the primary effector for mediating glucose transport in skeletal muscle and adipose tissue. Genetic ablation of GLUT4 results in impaired insulin tolerance and defects in glucose metabolism in skeletal muscle and adipose tissue. Because impaired muscle glucose transport leads to reduced whole body glucose uptake and hyperglycaemia, understanding the molecular regulation of glucose transport in skeletal muscle is important to develop effective strategies to prevent or reduce the incidence of Type II diabetes mellitus. In patients with Type II diabetes mellitus, reduced glucose transport in skeletal muscle is a major factor responsible for reduced whole body glucose uptake. Overexpression of GLUT4 in skeletal muscle improves glucose homeostasis in animal models of diabetes mellitus and protects against the development of diabetes mellitus. Thus, GLUT4 is an attractive target for pharmacological intervention strategies to control glucose homeostasis. This review will focus on the current understanding of the role of GLUT4 in regulating cellular glucose uptake and whole body glucose homeostasis.  相似文献   

12.
Post-menopausal women exhibit decreases in circulating estrogen levels and whole body insulin sensitivity, suggesting that estrogen regulates skeletal muscle glucose disposal. Thus, we assessed whether estrogen stimulates glucose uptake or enhances insulin sensitivity in skeletal muscle. Ex vivo muscle stimulation with 17β-estradiol (10 nM) resulted in a rapid (?10 min) increase in the phosphorylation of Akt, AMP-activated protein kinase (AMPK), and TBC1D1/4, key signaling proteins that regulate glucose uptake in muscle. Treatment with the estrogen receptor antagonist, ICI 182,780, only partly inhibited signaling, suggesting both an estrogen receptor-dependent and independent mechanism of estradiol action. 17β-Estradiol did not stimulate ex vivo muscle [3H]-2-deoxyglucose uptake or enhance insulin-induced glucose uptake, demonstrating discordance between the estradiol-induced stimulation of signaling proteins and muscle glucose uptake. This study is the first to demonstrate that estradiol stimulates Akt, AMPK, and TBC1D1/4 in intact skeletal muscle, but surprisingly, estradiol does not stimulate muscle glucose uptake.  相似文献   

13.
Synergic action of nitric oxide (NO) and prostaglandins (PG) in the regulation of muscle blood flow during exercise has been demonstrated. In the present study, we investigated whether these vasodilators also regulate local blood flow, flow heterogeneity, and glucose uptake within the exercising skeletal muscle. Skeletal muscle blood flow was measured in seven healthy young men using near-infrared spectroscopy and indocyanine green and muscle glucose uptake using positron emission tomography and 2-fluoro-2-deoxy-D-[(18)F]glucose without and with local blockade of NO and PG at rest and during one-legged dynamic knee-extension exercise. Local blockade was produced by infusing nitro-L-arginine methyl ester and indomethacin directly in the muscle via a microdialysis catheter. Blood flow and glucose uptake were measured in the region of blockade and in two additional regions of vastus lateralis muscle 1 and 4 cm away from the infusion of blockers. Local blockade during exercise at 25 and 40 watts significantly decreased blood flow in the infusion region and in the region 1 cm away from the site of infusion but not in the region 4 cm away. During exercise, muscle glucose uptake did not show any regional differences in response to blockade. These results show that NO and PG synergistically contribute to the local regulation of blood flow in skeletal muscle independently of muscle glucose uptake in healthy young men. Thus these vasodilators can play a role in regulating microvascular blood flow in localized regions of vastus lateralis muscle but do not influence regional glucose uptake. The findings suggest that local substrate uptake in skeletal muscle can be regulated independently of regional changes in blood flow.  相似文献   

14.
Glucose transport in muscle is activated by contractile activity, an effect that persists in the postexercise state. Polymyxin B, a cyclic decapeptide antibiotic, inhibits the stimulation of glucose uptake in isolated muscle by contractile activity but also decreases tension development in electrically stimulated muscle. The purpose of this study was to determine whether polymyxin B also inhibits contraction-stimulated glucose uptake after in vivo administration of the drug and to examine the relationship between the effects of polymyxin B on tension development and its effects on contraction-stimulated glucose uptake. When polymyxin B was administered to rats in vivo, glucose uptake in muscle after electrical stimulation was decreased, despite the same amount of tension developed as in control rats, indicating an effect of polymyxin B on glucose transport independent of tension development. Our results also indicate that the postexercise increase in glucose uptake is a function of the tension developed by prior contractions. When muscles were perfused with medium containing polymyxin B, this relationship was disrupted. These results provide evidence that polymyxin B causes a decrease in muscle glucose uptake independent of its effects on tension development. The extent to which its effects on glucose uptake are also the result of a diminution in contractile force is uncertain.  相似文献   

15.
In the present study, we investigated the effects of chronic clenbuterol treatment on insulin-stimulated glucose uptake in the presence of epinephrine in isolated rat skeletal muscle. Insulin (50 microU/ml) increased glucose uptake in both fast-twitch (epitrochlearis) and slow-twitch (soleus) muscles. In the presence of 24 nM epinephrine, insulin-stimulated glucose uptake was completely suppressed. This suppression of glucose uptake by epinephrine was accompanied by an increase in the intracellular concentration of glucose 6-phosphate and a decrease in insulin-receptor substrate-1-associated phosphatidylinositol 3-kinase (IRS-1/PI3-kinase) activity. Clenbuterol treatment had no direct effect on insulin-stimulated glucose uptake. However, after clenbuterol treatment, epinephrine was ineffective in attenuating insulin-stimulated muscle glucose uptake. This ineffectiveness of epinephrine to suppress insulin-stimulated glucose uptake occurred in conjunction with its inability to increase the intracellular concentration of glucose 6-phosphate and attenuate IRS-1/PI3-kinase activity. Results of this study indicate that the effectiveness of epinephrine to inhibit insulin-stimulated glucose uptake is severely diminished in muscle from rats pretreated with clenbuterol.  相似文献   

16.
The effects of exogenous oleate on glucose uptake, lactate production and glycogen concentration in resting and contracting skeletal muscle were studied in the perfused rat hindquarter. In preliminary studies with aged erythrocytes at a haemoglobin concentration of 8g/100ml in the perfusion medium, 1.8mm-oleate had no effect on glucose uptake or lactate production. During these studies it became evident that O(2) delivery was inadequate with aged erythrocytes. Perfusion with rejuvenated human erythrocytes at a haemoglobin concentration of 12g/100ml resulted in a 2-fold higher O(2) uptake at rest and a 4-fold higher O(2) uptake during muscle contraction than was obtained with aged erythrocytes. Rejuvenated erythrocytes were therefore used in subsequent experiments. Glucose uptake and lactate production by the well-oxygenated hindquarter were inhibited by one-third, both at rest and during muscle contraction, when 1.8mm-oleate was added to the perfusion medium. Addition of oleate also significantly protected against glycogen depletion in the fast-twitch red and slow-twitch red types of muscle, but not in white muscle, during sciatic-nerve stimulation. In the absence of added oleate, glucose was confined to the extracellular space in resting muscle. Addition of oleate resulted in intracellular glucose accumulation in red muscle. Contractile activity resulted in accumulation of intracellular glucose in all three muscle types, and this effect was significantly augmented in the red types of muscle by perfusion with oleate. The concentrations of citrate and glucose 6-phosphate were also increased in red muscle perfused with oleate. We conclude that, as in the heart, availability of fatty acids has an inhibitory effect on glucose uptake and glycogen utilization in well-oxygenated red skeletal muscle.  相似文献   

17.
NADPH oxidase inhibitors such as diphenylene iodonium (DPI) and apocynin lower whole body and blood glucose levels and improve diabetes when administered to rodents. Skeletal muscle has an important role in managing glucose homeostasis and we have used L6 cells, C(2)C(12) cells and primary muscle cells as model systems to investigate whether these drugs regulate glucose uptake in skeletal muscle cells. The data presented in this study show that apocynin does not affect glucose uptake in skeletal muscle cells in culture. Tat gp91ds, a chimeric peptide that inhibits NADPH oxidase activity, also failed to affect glucose uptake and we found no significant evidence of NADPH oxidase (subunits tested were Nox4, p22phox, gp91phox and p47phox mRNA) in skeletal muscle cells in culture. However, DPI increases basal and insulin-stimulated glucose uptake in L6 cells, C(2)C(12) cells and primary muscle cells. Detailed studies on L6 cells demonstrate that the increase of glucose uptake is via a mechanism independent of phosphoinositide-3 kinase (PI3K)/Akt but dependent on AMP-activated protein kinase (AMPK). We postulate that DPI through inhibition of mitochondrial complex 1 and decreases in oxygen consumption, leading to decreases of ATP and activation of AMPK, stimulates glucose uptake in skeletal muscle cells.  相似文献   

18.
Objective: Insulin resistance in obese subjects results in the impaired use of glucose by insulin‐sensitive tissues, e.g., skeletal muscle. In the present study, we determined whether insulin resistance in obesity is associated with an impaired ability of exercise to stimulate muscle blood flow, oxygen delivery, or glucose uptake. Research Methods and Procedures: Nine obese (body mass index = 36 ± 2 kg/m2) and 11 age‐matched nonobese men (body mass index = 22 ± 1 kg/m2) performed one‐legged isometric exercise during hyperinsulinemia. Rates of femoral muscle blood flow, oxygen consumption, and glucose uptake were measured simultaneously in both legs using [15O]H2O, [15O]O2, [18F]fluoro‐deoxy‐glucose, and positron emission tomography. Results: The obese subjects exhibited resistance to insulin stimulation of glucose uptake in resting muscle, regardless of whether glucose uptake was expressed per kilogram of femoral muscle mass (p = 0.001) or per the total mass of quadriceps femoris muscle. At similar workloads, oxygen consumption, blood flow, and glucose uptake were lower in the obese than the nonobese subjects when expressed per kilogram of muscle, but similar when expressed per quadriceps femoris muscle mass. Discussion: We conclude that obesity is characterized by insulin resistance of glucose uptake in resting skeletal muscle regardless of how glucose uptake is expressed. When compared with nonobese individuals at similar absolute workloads and under identical hyperinsulinemic conditions, the ability of exercise to increase muscle oxygen uptake, blood flow, and glucose uptake per muscle mass is blunted in obese insulin‐resistant subjects. However, these defects are compensated for by an increase in muscle mass.  相似文献   

19.
Hypertension and noninsulin-dependent diabetes mellitus are usually associated with marked glucose intolerance. Hypertensive and even nonhypertensive diabetic individuals display disturbances of the normal circadian blood pressure rhythm. However, little is known about circadian changes of the glucose uptake in muscle and fat cells, the major glucose utilizing tissues. Therefore, we investigated circadian rhythms of glucose uptake in primary muscle and fat cell cultures of hypertensive and type II diabetic rats and their respective control strains. 2-Deoxy-D-(1-3H)glucose uptake was measured over 48 h after synchronization of cells by means of medium change with and without addition of insulin, phloretine, and/or staurosporine. The circadian changes of glucose uptake were assessed by fitting cosine curves to the uptake values. Insulin stimulation of deoxyglucose uptake was only present in control animals, not in hypertensive and diabetic rats. Deoxyglucose uptake displayed a circadian rhythm in control animals, and was markedly disturbed in hypertensive and diabetic animals. Blocking of glucose transporters by phloretine abolished the circadian pattern of deoxyglucose uptake indicating a role of glucose transporters in its generation. Inhibition of kinases by staurosporine inhibited the insulin-stimulated deoxyglucose uptake, but did not dampen the circadian rhythmicity of basal deoxyglucose uptake. The generation of the circadian rhythm of glucose uptake in muscle and fat cell cultures is therefore probably insulin independent and independent of protein kinases. In summary, our results show for the first time: (a) a circadian rhythm of deoxyglucose uptake in glucose utilizing muscle and fat cells in vitro, (b) a disruption of this rhythm in cells of hypertensive and diabetic rats.  相似文献   

20.
Both tendon and peritendinous tissue show evidence of metabolic activity, but the effect of acute exercise on substrate turnover is unknown. We therefore examined the influence of acute exercise on glucose uptake in the patellar and quadriceps tendons during dynamic exercise in humans. Glucose uptake was measured in five healthy men in the patellar and quadriceps tendons and the quadriceps femoris muscle at rest and during dynamic knee-extension exercise (25 W) using positron emission tomography and [18F]-2-fluoro-2-deoxy-D-glucose ([18F]FDG). Glucose uptake index was calculated by dividing the tissue activity with blood activity of [18F]FDG. Exercise increased glucose uptake index by 77% in the patellar tendon (from 0.30 +/- 0.09 to 0.51 +/- 0.16, P = 0.03), by 106% in the quadriceps tendon (from 0.37 +/- 0.15 to 0.75 +/- 0.36, P = 0.02), and by 15-fold in the quadriceps femoris muscle (from 0.31 +/- 0.11 to 4.5 +/- 1.7, P = 0.005). The exercise-induced increase in the glucose uptake in neither tendon correlated with the increase in glucose uptake in the quadriceps muscle (r = -0.10, P = 0.87 for the patellar tendon and r = -0.30, P = 0.62 for the quadriceps tendon). These results show that tendon glucose uptake is increased during exercise. However, the increase in tendon glucose uptake is less pronounced than in muscle and the increases are uncorrelated. Thus tendon glucose uptake is likely to be regulated by mechanisms independently of those regulating skeletal muscle glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号