首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six heat shock protein (HSP) genes from five HSP families in the parasitoid, Pteromalus puparum, were evaluated for their response to temperature (-15 ~ 3°C , and 30 ~ 42°C for 1 h), heavy metals (0.5 ~ 5 mM Cd(2+) and Cu(2+) for 24 h and 60 h), and starvation (24 h). Compared with other insect HSPs, all conserved motifs are found in P. puparum HSPs, and they are very similar to those of the recently sequenced ectoparasitoid Nasonia vitripennis. The temporal gene expression patterns indicated that these six HSP genes were all heat-inducible, of which hsp40 was the most inducible. The temperatures for maximal HSP induction at high and low temperature zone were 36 or 39°C and -3°C, respectively. In the hot zone, all HSP genes have the same initial temperature (33°C) for up-regulation. Low concentrations of Cd(2+) for a short-term promoted the expression of all HSP genes, but not high concentrations or long-term treatments. Cu(2+) stress for 24 h increased expression of nearly all HSP. Four HSP genes changed after starvation. We infer that all six HSP genes are sensitive to heat. This may help understand the absence of P. puparum during the summer and winter. The expression profiles of six HSP genes in P. puparum under heavy metal stress indicates that HSP is a short-term response to cellular distress or injury induced by Cd(2+) and Cu(2+).  相似文献   

2.
Acquisition of plant viruses has various effects on physiological mechanisms in vector insects. Bemisia tabaci is the only known vector of Tomato yellow leaf curl virus (TYLCV), which is a serious virus affecting tomato cultivars. In this study, the lifespan of Q1 biotype was compared between non-viruliferous (NV) and TYLCV-viruliferous (V) whiteflies. Total lifespan from egg to adult death of NV whiteflies was 62.54days but 10.64days shorter in V whiteflies. We investigated the temperature susceptibility of B. tabaci by comparing mortalities as well as heat shock protein (hsp) mRNA levels between NV and V whiteflies. For this, NV and V whiteflies were exposed for either 1 or 3h at 4, 25, and 35°C. The mortality of V whiteflies was higher than NV ones following exposure at either 4 or 35°C, but there was no significant difference at 25°C. Analysis of the expression level of heat shock protein (hsp) genes using quantitative real-time PCR showed that both cold and heat shock treatments stimulated higher expression of hsps (hsp40, hsp70, and hsp90) at various rates in V whiteflies than NV ones, but there was no difference at 25°C. All together, our results show that TYLCV acquisition accelerated the developmental rate and increased susceptibility to thermal stress in B. tabaci. Therefore, this modification may result in reduced vector longevity due to increased metabolic energy utilization. Our results provide insights into the complex interaction between vector fitness and thermal stress in relation to the acquisition and transmission of plant viruses.  相似文献   

3.
We asked whether climate change might affect the geographic distributions of Aedes aegypti (L.) and Aedes albopictus (Skuse) (Diptera: Culicidae). We tested the effects of temperature, diet and the presence of congeneric species on the performance of immature stages of these two aedine species in the laboratory. Mosquitoes in three different species-density combinations were reared at four constant temperatures (20 °C, 25 °C, 30 °C, 35 °C) on low- or high-level diets. Of the four temperatures tested, mortality increased only at 35 °C in both species. Mortality was higher on the high-level diet than on the low-level diet at 35 °C, but not at other temperatures. The presence of congeneric species had a significant positive effect on mortality in Ae. albopictus, but not in Ae. aegypti. Both species developed more quickly at higher temperatures within the range of 20-30 °C; development was not enhanced at 35 °C. Population growth of Ae. albopictus was more stable, regardless of diet and temperature; that of Ae. aegypti varied more according to these two factors. These species-specific attributes may help to explain the latitudinal distribution of the mosquitoes and degree of species dominance where they are sympatric.  相似文献   

4.
Bradysia odoriphaga and B. difformis (Diptera: Sciaridae) are devastating pests of vegetables, ornamentals and edible mushrooms. In Chinese chive fields, the two Bradysia species occur with similar regularities: outbreaks in spring and autumn, and population decreases in summer. Temperature may be an important factor restricting their population abundance in summer. Here, we performed a life-table study under constant high temperatures and assessed the tolerance of two Bradysia species to heat shock. Life parameters of the Bradysia species indicated slow developmental rates, and low survival rates and fecundity, when the temperature was higher than 30 °C. At 34 °C, individuals were unable to reach the adult stages from eggs. Moreover, temperatures above 36 °C showed lethal effects, decreasing their survival rates. The median lethal time (LT50) values of 4th instar B. odoriphaga and B. difformis larvae were 46.82 and 32.97 h, respectively, while the values at 38 °C were 2.12 and 1.51 h, respectively. The 4th instar larvae and pupae possessed higher thermotolerance levels than adults and eggs, indicating sensitivities to heat stress. Moreover, B. odoriphaga was more thermotolerant than B. difformis. Thus, weak thermotolerance levels may restrict their occurrences during the period of summer heat, and the difference in thermotolerance levels between the two species may be related to their regional distributions.  相似文献   

5.
The acute heat-shock response of the tropical estuarine fish species barramundi Lates calcarifer as indicated by the expression of genes within stress (hsp 90AA, hsp 90AB, hsp 70 and hsc 70), metabolic (cisy, cco II and ldh) and growth (igf1 and mstn 1) related pathways was examined following an increase in water temperature from 28 to 36° C over 30 min. Lates calcarifer were maintained at the acute stress temperature of 36° C for 1 h before being returned to 28° C and allowed to recover at this temperature for a further 2 weeks. Muscle tissue sampling over the experimental period allowed for the expression quantification of stress, metabolic and growth-related genes via quantitative real-time polymerase chain reaction (qrt-PCR) where a robust and reliable normalization approach identified both α-tub and Rpl8 as appropriate genes for the analysis of gene expression in response to an acute heat stress. hsp90AA and hsp70 of the inducible heat-shock response pathway showed a massive up-regulation of gene expression in response to heat stress, whilst the constitutive heat-shock genes hsp90AB and hsp70 showed no change over the course of the experiment and a small increase after 2 weeks of recovery, respectively. Of the three genes representing the metabolic pathway (cisy, cco II and ldh) only cco II changed significantly showing a decrease in gene expression, which may suggest a small suppression of aerobic metabolism. igf1 of the growth pathway showed no significant differences in response to an acute heat stress, whilst mstn1 increased at the beginning of the heat stress but returned to basal levels soon after. Overall, the results demonstrate that an acute heat stress in L. calcarifer caused a significant increase in the expression of genes from the stress response pathway and a possible decrease in aerobic metabolism with only relatively minor changes to the growth pathway highlighting the hardy nature of L. calcarifer and its resilience in coping with sudden temperature changes routinely encountered within its natural environment.  相似文献   

6.
Metabolic variability across latitudinal populations of gammarid amphipods was examined in the summer by determining whole-animal rates of oxygen uptake (M(o)?) in four species with overlapping distribution patterns in the northeast Atlantic and Arctic oceans. Comparisons were made between an arctic/boreal species, Gammarus setosus, a subarctic/boreal species, Gammarus oceanicus, a boreal/temperate species, Gammarus duebeni duebeni, and a temperate species, Gammarus locusta. Measurements included acclimatized M(o)? in all four species and M(o)? after acclimation to 10°C in two populations of G. oceanicus and G. locusta. In G. oceanicus, acclimatized M(o)? declined with latitude (13° to 5°C) so that metabolic rates were lower in subarctic (79°N) relative to temperate (58°N) populations and similar to the values in G. setosus at 79°N. Consequently, there was no evidence for metabolic rate compensation in the colder-water, high-latitude populations in the summer. Further examination of the specific effects of temperature revealed similarities in M(o)? between populations of G. oceanicus acclimated at 10°C and similarities in thermal sensitivity (Q(10)) and activation energies (E(a)) on exposure to acute temperature change. In sharp contrast, there was no variation in summer acclimatized M(o)? with latitude in either G. d. duebeni between 48° and 70°N or G. locusta between 38° and 53°N. Instead, the two species maintained relatively high metabolic rates across latitudes, which were associated in G. locusta with differences in M(o)? and with Q(10) and E(a) values in amphipods acclimated at 10°C. The ability to compensate metabolic rate with latitude in the summer suggests greater metabolic flexibility, which predicts a greater capacity for survival during climate change of the temperate/boreal over the subarctic and arctic gammarid species.  相似文献   

7.
Progamic processes are particularly temperature-sensitive and, in lowland plants, are usually drastically reduced below 10 °C and above 30 °C. Little is known about how effectively sexual processes of mountain plants function under the large temperature fluctuations at higher altitudes. The present study examines duration and thermal thresholds for progamic processes in six common plant species (Cerastium uniflorum, Gentianella germanica, Ranunculus alpestris, R. glacialis, Saxifraga bryoides, S. caesia) from different altitudinal zones in the European Alps. Whole plants were collected from natural sites shortly before anthesis and kept in a climate chamber until further processing. Flowers with receptive stigmas were hand-pollinated with allopollen and exposed to controlled temperatures between -2 and 40 °C. Pollen performance (adhesion to the stigma, germination, tube growth, fertilisation) was quantitatively analysed, using the aniline blue fluorescence method. Pollen adhesion was possible from -2 to 40 °C. Pollen germination and tube growth occurred from around 0 to 35 °C in most species. Fertilisation was observed from 5 to 30-32 °C (0-35 °C in G. germanica). The progamic phase was shortest in G. germanica (2 h at 30 °C, 12 h at 5 °C, 24 h at 0 °C), followed by R. glacialis (first fertilisation after 2 h at 30 °C, 18 h at 5 °C). In the remaining species, first fertilisation usually occurred after 4-6 h at 30 °C and after 24-30 h at 5 °C. Thus, mountain plants show remarkably flexible pollen performance over a wide temperature range and a short progamic phase, which may be essential for successful reproduction in the stochastic high-mountain climate.  相似文献   

8.
Sessile aquatic invertebrates are at great risk for temperature stress. Changes in ambient temperature affect metabolic demands, thus altering energy budgets, and often reducing performance or survival of these species. Zebra mussels are highly invasive, yet little is known about their physiology under biologically relevant conditions, especially with regard to cellular parameters. This study examined the effect of temperature on zebra mussel physiology and investigated whether the levels of two cellular markers, HSP70 and AMPK activity, could serve as indicators of chronic thermal stress. Mussels were collected from a site in central Illinois, slowly acclimated to either 10, 20, or 30°C, and held at these temperatures for four weeks. Size, mortality, and the cellular markers were measured. Size and mortality data indicate heat stress at 30°C. Elevation in HSP70 levels confirmed this temperature elicits a stress response. Elevation in AMPK activity was not detected at 30°C, most likely indicating this temperature is beyond the scope for this marker, and therefore at or near the lethal limit. These data suggest this zebra mussel population experiences reduced performance and potential mortality in the field during summer months. Interestingly, cold acclimation resulted in a temporary elevation in AMPK activity, a result that has not been reported previously in ectotherms and is likely attributable to the metabolic demands of thermal acclimation.  相似文献   

9.
The effect of temperature level (24°C, 28°C, 32°C or 36°C) on performance and thermoregulatory response in growing pigs during acclimation to high ambient temperature was studied on a total of 96 Large White barrows. Pigs were exposed to 24°C for 10 days (days -10 to -1, P0) and thereafter to a constant temperature of 24°C, 28°C, 32°C or 36°C for 20 days. Pigs were housed in individual metal slatted pens, allowing a separate collection of faeces and urine and given ad libitum access to feed. Rectal (RT) and cutaneous (CT) temperatures and respiration rate (RR) were measured three times daily (0700, 1200 and 1800 h) every 2 to 3 days during the experiment. From day 1 to 20, the effect of temperature on average daily feed intake (ADFI) and BW gain (average daily gain, ADG) was curvilinear. The decrease of ADFI averaged 90 g/day per °C between 24°C and 32°C and 128 g/day per °C between 32°C and 36°C. The corresponding values for ADG were 50 and 72 g/day per °C, respectively. The 20 days exposure to the experimental temperature was divided in two sub-periods (P1 and P2, from day 1 to 10 and from day 11 to 20, respectively). ADFI was not affected by duration of high-temperature exposure (i.e. P2 v. P1). The ADG was not influenced by the duration of exposure at 24°C and 28°C groups. However, ADG was higher at P2 than at P1 and this effect was temperature dependent (+130 and +458 g/day at 32°C and 36°C, respectively). In P2 at 36°C, dry matter digestibility significantly increased (+2.1%, P < 0.01); however, there was no effect of either duration or temperature on the digestibility of dry matter at group 24°C and 32°C. RT, CT and RR were measured three times daily (0700, 1200 and 1800 h) every 2 to 3 days during the experiment. Between 28°C and 36°C, RT and CT were lower during P2 than during P1 (-0.20°C and -0.23°C; P < 0.05), whereas RR response was not affected by the duration of exposure whatever the temperature level. In conclusion, this study suggests that the effect of elevated temperatures on performance and thermoregulatory responses is dependent on the magnitude and the duration of heat stress.  相似文献   

10.
The role glucosinolates play in defending plants against phloem feeders such as aphids and whiteflies is currently not clear as these herbivores may avoid bringing glucosinolates from the phloem sap into contact with myrosinase enzymes. Here, we investigated the effects of high levels of aliphatic and indolic glucosinolates on life history traits and detoxification gene expression in two sibling species, B and Q, of the whitefly Bemisia tabaci. High levels of aliphatic glucosinolates decreased the average oviposition rate of both species and reduced the survival and developmental rate of Q nymphs. High levels of indolic glucosinolates decreased the oviposition rate and survival of nymphal stages of the B species and the developmental rate of both species. Molecular analyses revealed two major asymmetries between the B and Q species. First, specific GST genes (BtGST1 and BtGST2) were significantly induced during exposure to indolic glucosinolates only in Q. This may reflect the genes putative involvement in indolic glucosinolates detoxification and explain the species' good performance on plants accumulating indolic glucosinolates. Second, the constitutive expression of eight of the 10 detoxification genes analysed was higher in the Q species than in the B species. Interestingly, four of these genes were induced in B in response to high levels of glucosinolates. It seems, therefore, that the B and Q species differ in their 'optimal defence strategy'. B utilizes inducible defences that are profitable if the probability of experiencing the stress is small and its severity is low, while Q invests significant resources in being always 'ready' for a challenge.  相似文献   

11.
The aim of the present study was to determine the extent to which the fish liver is perfused with blood. Transonic? flow probes were therefore implanted around the ventral aorta and hepatic vein(s) to record baseline blood flows in rainbow trout (Oncorhynchus mykiss) previously held under two different feeding regimes (food-deprived or fed to satiation, 8-12 weeks). Fish from both groups were exposed to a gradual temperature decrease (12°C to 5°C) and physical disturbance. Cardiac output (Q), stroke volume (Sv) and hepatic venous blood flow (HVBF) were significantly reduced in food-deprived trout at 12°C. Heart rate was not significantly affected by nutritional status, but was significantly reduced when temperature was decreased to 5°C. Physically disturbing each fish at 12°C and 5°C showed that the performance capacity of the heart was not affected by food deprivation as the capacity to increase Q and Sv was not reduced in the food-deprived group. Overall this study showed that food deprivation in rainbow trout reduced cardiac and hepatic blood flows. However, long-term food deprivation did not affect the capacity of the heart to acutely increase performance.  相似文献   

12.
13.
The whitefly Bemisia tabaci (Gennadius) causes tremendous losses to agriculture by direct feeding on plants and by vectoring several families of plant viruses. The B. tabaci species complex comprises over 10 genetic groups (biotypes) that are well defined by DNA markers and biological characteristics. B and Q are amongst the most dominant and damaging biotypes, differing considerably in fecundity, host range, insecticide resistance, virus vectoriality, and the symbiotic bacteria they harbor. We used a spotted B. tabaci cDNA microarray to compare the expression patterns of 6000 ESTs of B and Q biotypes under standard 25 °C regime and heat stress at 40 °C. Overall, the number of genes affected by increasing temperature in the two biotypes was similar. Gene expression under 25 °C normal rearing temperature showed clear differences between the two biotypes: B exhibited higher expression of mitochondrial genes, and lower cytoskeleton, heat-shock and stress-related genes, compared to Q. Exposing B biotype whiteflies to heat stress was accompanied by rapid alteration of gene expression. For the first time, the results here present differences in gene expression between very closely related and sympatric B. tabaci biotypes, and suggest that these clear-cut differences are due to better adaptation of one biotype over another and might eventually lead to changes in the local and global distribution of both biotypes.  相似文献   

14.
Two whitefly species, Trialeurodes vaporariorum and Bemisia tabaci biotype B were shown to have different temperature tolerance and seasonal dynamics. To determine whether this variation in thermal tolerance is related to different expression patterns of heat shock protein (hsp) genes during temperature stress, we obtained complete cDNA sequences for hsp90, hsp70 and hsp20, and analysed their expression profiles across temperature gradients by real‐time quantitative polymerase chain reaction (PCR). Six full‐length cDNAs were cloned and sequenced from these two species. The full‐length cDNAs of hsp90s contain 2166 and 2157 bp open‐reading frames (ORF) which encode proteins with calculated molecular weights of 83 013 and 82 857 Da in T. vaporariorum and B. tabaci, respectively. The 1947 and 1959 bp ORFs of whitefly hsp70s comprise 649 and 653 amino acids with the calculated masses of 70 885 and 71 008 Da in T. vaporariorum and B. tabaci, respectively. Both complete cDNAs of hsp20 of T. vaporariorum and B. tabaci contain 585 bp ORFs and deduced amino acid sequences had molecular weights of 21 559 and 21 539 Da, respectively. The hsp expression profile results showed that temperatures for onset (Ton) or maximal (Tmax) induction of hsp expression in T. vaporariorum were generally 2–6°C lower than those in B. tabaci. These results suggest that the Ton (or Tmax) of hsps can represent the differences in temperature tolerance of these two whitefly species, and may be used to determine their natural geographical distribution and natural population seasonal dynamics. Significant upregulation of most hsps were observed when temperature stress was lifted, except that hsp70 and hsp20 of B. tabaci did not respond to the cold stress, indicating that response to heat and cold stress may have a different genetic and physiological basis in two whitefly species. These results highlight the importance of understanding the complexity of the heat shock response across multiple isoforms while attempting to link them to whole‐organism traits such as thermal tolerance.  相似文献   

15.
The capacities of eurythermal ectotherms to withstand wide ranges of temperature are based, in part, on abilities to modulate gene expression as body temperature changes, notably genes encoding proteins of the cellular stress response. Here, using a complementary DNA microarray, we investigated the sequence in which cellular stress response-linked genes are expressed during acute heat stress, to elucidate how severity of stress affects the categories of genes changing expression. We also studied how prior acclimation history affected gene expression in response to acute heat stress. Eurythermal goby fish (Gillichthys mirabilis) were acclimated to 9 ± 0.5, 19 ± 0.5, and 28 ± 0.5°C for 1 mo. Then fish were given an acute heat ramp (4°C/h), and gill tissues were sampled every +4°C to monitor gene expression. The average onset temperature for a significant change in expression during acute stress increased by ~2°C for each ~10°C increase in acclimation temperature. For some genes, warm acclimation appeared to obviate the need for expression change until the most extreme temperatures were reached. Sequential expression of different categories of genes reflected severity of stress. Regardless of acclimation temperature, the gene encoding heat shock protein 70 (HSP70) was upregulated strongly during mild stress; the gene encoding the proteolytic protein ubiquitin (UBIQ) was upregulated at slightly higher temperatures; and a gene encoding a protein involved in cell cycle arrest and apoptosis, cyclin-dependent kinase inhibitor 1B (CDKN1B), was upregulated only under extreme stress. The tiered, stress level-related expression patterns and the effects of acclimation on induction temperature yield new insights into the fundamental mechanisms of eurythermy.  相似文献   

16.
Abstract The whitefly Bemisia tabaci harbors Portiera aleyrodidarum, an obligatory symbiotic bacterium, as well as several secondary symbionts, including Rickettsia, Hamiltonella, Wolbachia, Arsenophonus, Cardinium and Fritschea, the function of which is unknown. In Israel, Rickettsia is found in both the B and Q of B. tabaci biotypes, and while all other secondary symbionts are located in the bacteriomes, Rickettsia can occupy most of the body cavity of the insect. We tested whether Rickettsia influences the biology of B. tabaci and found that exposing a Rickettsia‐containing population to increasing temperatures significantly increases its tolerance to heat shock that reached 40°C, compared to a Rickettsia‐free population. This increase in tolerance to heat shock was not associated with specific induction of heat‐shock protein gene expression; however, it was associated with reduction in Rickettsia numbers as was assessed by quantitative real‐time polymerase chain reaction and fluorescence in situ hybridization analyses. To assess the causes for thermotolerance when Rickettsia is reduced, we tested whether its presence is associated with the induction of genes required for thermotolerance. We found that under normal 25°C rearing temperature, genes associated with response to stress such as cytoskeleton genes are induced in the Rickettsia‐containing population. Thus, the presence of Rickettsia in B. tabaci under normal conditions induces the expression of genes required for thermotolerance that under high temperatures indirectly lead to this tolerance.  相似文献   

17.
Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using two different strategies of mechanical ventilation. Rabbits were ventilated using either conventional mechanical ventilation (CMV) or high-frequency oscillatory ventilation (HFOV). Lung injury was induced by tracheal saline infusion (30 ml/kg, 38°C). In addition, five healthy rabbits were studied for oxidative stress. Isolated lymphocytes from peripheral blood and lung tissue samples were analyzed by alkaline single cell gel electrophoresis (comet assay) to determine DNA damage. Total antioxidant performance (TAP) assay was applied to measure overall antioxidant performance in plasma and lung tissue. HFOV rabbits had similar results to healthy animals, showing significantly higher antioxidant performance and lower DNA damage compared with CMV in lung tissue and plasma. Total antioxidant performance showed a significant positive correlation (r = 0.58; P = 0.0006) in plasma and lung tissue. In addition, comet assay presented a significant positive correlation (r = 0.66; P = 0.007) between cells recovered from target tissue and peripheral blood. Moreover, antioxidant performance was significantly and negatively correlated with DNA damage (r = -0.50; P = 0.002) in lung tissue. This study indicates that both TAP and comet assay identify increased oxidative stress in CMV rabbits compared with HFOV. Antioxidant performance analyzed by TAP and oxidative DNA damage by comet assay, both in plasma, reflects oxidative stress in the target tissue, which warrants further studies in humans.  相似文献   

18.
Gao WJ  Leung KT  Qin WS  Liao BQ 《Bioresource technology》2011,102(19):8733-8740
Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor (SAnMBR) treating thermomechanical pulping pressate were studied for 416 days. The results showed that the SAnMBR system were highly resilient to temperature variations in terms of chemical oxygen demand (COD) removal. The residual COD in treated effluent was slightly higher at 55 °C than that at 37 and 45 °C. There were no significant changes in biogas production rate and biogas composition. However, temperature shocks resulted in an increase in biogas production temporarily. The SAnMBR could tolerate the 5 and 10 °C temperature shocks at 37 °C and the temperature variations from 37 to 45 °C. The temperature shock of 5 and 10 °C at 45 °C led to slight and significant disturbance of the performance, respectively. Temperature affected the richness and diversity of microbial populations.  相似文献   

19.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

20.
Bemisia tabaci (Gennadius) biotype B and Trialeurodes vaporariorum (Westwood) are invasive whitefly species that often co-occur on greenhouse-grown vegetables in northern China. Although B. tabaci biotype B has been present in China for a relatively short period of time, it has become dominant over T. vaporariorum. We studied the interspecific competitive interactions between the two species in single or mixed cultures at 24 ± 1 °C, 40 ± 5% RH, and L14:D10 h photoperiod. Female longevity on tomato was not significantly different between species, but B. tabaci reproduced 4.3 to 4.9 fold more progeny. The ratio of female to male progeny in both instances was greater for B. tabaci. When cultured on tomato, cotton, and tobacco, B. tabaci developed 0.8, 3.3, and 4.7 d earlier in single culture, and 1.8, 3.9, and 4.3 d earlier in mixed culture. B. tabaci displaced T. vaporariorum in four, five and six generations when the initial ratios of B. tabaci to T. vaporariorum were 15:15, 20:10, or 10:20 on tomato. Populations of B. tabaci were 2.3 fold higher than that of T. vaporariorum on tomato plants for seven consecutive generations in single culture. B. tabaci performed better in development, survival, fecundity, and female ratio. We conclude that B. tabaci could displace T. vaporariorum in as short as four generations in a controlled greenhouse environment when they start at equal proportions. Warmer greenhouse conditions and an increase in total greenhouse area could be contributing factors in the recent dominance of B. tabaci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号