首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Drosophila imaginal epithelia, cells mutant for the endocytic neoplastic tumor suppressor gene vps25 stimulate nearby untransformed cells to express Drosophila Inhibitor-of-Apoptosis-Protein-1 (DIAP-1), conferring resistance to apoptosis non-cell autonomously. Here, we show that the non-cell autonomous induction of DIAP-1 is mediated by Yorkie, the conserved downstream effector of Hippo signaling. The non-cell autonomous induction of Yorkie is due to Notch signaling from vps25 mutant cells. Moreover, activated Notch in normal cells is sufficient to induce non-cell autonomous Yorkie activity in wing imaginal discs. Our data identify a novel mechanism by which Notch promotes cell survival non-cell autonomously and by which neoplastic tumor cells generate a supportive microenvironment for tumor growth.  相似文献   

2.
Deregulation of the Hedgehog (Hh) signaling pathway is associated with the development of human cancer including medullobastoma and basal cell carcinoma. Loss of Patched or activation of Smoothened in mouse models increases the occurrence of tumors. Likewise, in a Drosophila eye model, deregulated Hedgehog signaling causes overgrowth of eye and head tissues. Surprisingly, we show that cells with deregulated Hh signaling do not or only little contribute to the tissue overgrowth. Instead, they become more sensitive to apoptosis and may eventually be eliminated. Nevertheless, these mutant cells increase proliferation in the adjacent wild-type tissue, i.e., in a non-cell autonomous manner. This non-cell autonomous effect is position-dependent and restricted to mutant cells in the anterior portion of the eye. We also observe precocious non-cell autonomous differentiation in genetic mosaics with deregulated Hh signaling. Together, these non-cell autonomous growth and differentiation phenotypes in the Drosophila eye model reveal another strategy by which oncogenes may generate a supportive micro-environment for tumor growth.  相似文献   

3.
Decapentaplegic (Dpp), a Drosophila TGF beta/bone morphogenetic protein homolog, functions as a morphogen to specify cell fate along the anteroposterior axis of the wing. Dpp is a heparin-binding protein and Dpp signal transduction is potentiated by Dally, a cell-surface heparan sulfate proteoglycan, during assembly of several adult tissues. However, the molecular mechanism by which the Dpp morphogen gradient is established and maintained is poorly understood. We show evidence that Dally regulates both cellular responses to Dpp and the distribution of Dpp morphogen in tissues. In the developing wing, dally expression in the wing disc is controlled by the same molecular pathways that regulate expression of thick veins, which encodes a Dpp type I receptor. Elevated levels of Dally increase the sensitivity of cells to Dpp in a cell autonomous fashion. In addition, dally affects the shape of the Dpp ligand gradient as well as its activity gradient. We propose that Dally serves as a co-receptor for Dpp and contributes to shaping the Dpp morphogen gradient.  相似文献   

4.
Hedgehog (Hh) signaling is important for development and homeostasis in vertebrates and invertebrates. Ligand-independent, deregulated Hh signaling caused by loss of negative regulators such as Patched causes excessive cell proliferation, leading to overgrowth in Drosophila and tumors in humans, including basal-cell carcinoma and medulloblastoma. We show that in Drosophila deregulated Hh signaling also promotes cell survival by increasing the resistance to apoptosis. Surprisingly, cells with deregulated Hh activity do not protect themselves from apoptosis; instead, they promote cell survival of neighboring wild-type cells. This non-cell autonomous effect is mediated by Hh-induced Notch signaling, which elevates the protein levels of Drosophila inhibitor of apoptosis protein-1 (Diap-1), conferring resistance to apoptosis. In summary, we demonstrate that deregulated Hh signaling not only promotes proliferation but also cell survival of neighboring cells. This non-cell autonomous control of apoptosis highlights an underappreciated function of deregulated Hh signaling, which may help to generate a supportive micro-environment for tumor development.  相似文献   

5.
《Fly》2013,7(3):226-229
We have generated wing disc compartments that contain marked fast growing M+ clones surrounded by slow dividing M/+ cells. Under these conditions the interactions between fast and slow dividing cells at the clone borders frequently lead to cell competition. However, our assay suppressing apoptosis indicates that cell competition plays no major role in size control. We argue that cells within a compartment proliferate according to their genotype independently of each other and that their contribution to the final structure will depend solely on their proliferation rate. This model is supported by a computer simulation that predicts values similar to those found experimentally. Our results on the growth of M+ clones within compartments and on the expression of developmental genes like vestigial and wingless suggest the existence of a non-cell autonomous mechanism that functions at the level of the entire cell population. It measures the population size in each moment, determines the corresponding expression levels of developmental genes and establishes the time to arrest growth.  相似文献   

6.
We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient.  相似文献   

7.
8.
Morphogen gradients play a key role in multiple differentiation processes. Both the formation of the gradient and its interpretation by the receiving cells need to occur at high precision to ensure reproducible patterning. This need for quantitative precision is challenged by fluctuations in the environmental conditions and by variations in the genetic makeup of the developing embryos. We discuss mechanisms that buffer morphogen profiles against variations in gene dosage. Self-enhanced morphogen degradation and pre-steady-state decoding provide general means for buffering the morphogen profile against fluctuations in morphogen production rate. A more specific “shuttling” mechanism, which establishes a sharp and robust activation profile of a widely expressed morphogen, and enables the adjustment of morphogen profile with embryo size, is also described. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells. The integration theory and experiments are increasingly used, providing key insights into the system-level functioning of the developmental system.In order for a uniform field of cells to differentiate into a reproducible pattern of organs and tissues, cells need to receive information about their position within the field. During development, positional information is often conveyed by spatial gradients of morphogens (Wolpert 1989). In the presence of such gradients, cells are subject to different levels of morphogen, depending on their positions within the field, and activate, accordingly, one of several gene expression cassettes. The quantitative shape of the morphogen gradient is critical for patterning, with cell-fate boundaries established at specific concentration thresholds. Although these general features of morphogen-based patterning are universal, the range and form of the morphogen profile, and the pattern of induced target genes, vary significantly depending on the tissue setting and the signaling pathways used.The formation of a morphogen gradient is a dynamic process, influenced by the kinetics of morphogen production, diffusion, and degradation. These processes are tightly controlled through intricate networks of positive and negative feedback loops, which shape the gradient and enhance its reproducibility between individual embryos and developmental contexts. In the past three decades, many of the components comprising the morphogen signaling cascades have been identified and sorted into pathways, enabling one to start addressing seminal questions regarding their functionality: How is it that morphogen signaling is reproducible from one embryo to the next, despite fluctuations in the levels of signaling components, temperature differences, variations in size, or unequal distribution of components between daughter cells? Are there underlying mechanisms that assure a reproducible response? Are these mechanisms conserved across species, similar to the signaling pathways they control?In this review, we outline insights we gained by quantitatively analyzing the process of morphogen gradient formation. We focus on mechanisms that buffer morphogen profiles against fluctuations in gene dosage, and describe general means by which such buffering is enhanced. These mechanisms include self-enhanced morphogen degradation and pre-steady-state decoding. In addition, we describe a more specific “shuttling” mechanism that is used to generate a sharp and robust profile of a morphogen activity from a source that is broadly produced. We discuss the implication of the shuttling mechanism for the ability of embryos to adjust their pattern with size. Finally, we consider the transformation of the smooth gradient profile into sharp borders of gene expression in the signal-receiving cells.  相似文献   

9.
The organization of cells and tissues is controlled by the action of 'form-giving' signalling molecules, or morphogens, which pattern a developmental field in a concentration-dependent manner. As the fate of each cell in the field depends on the level of the morphogen signal, the concentration gradient of the morphogen prefigures the pattern of development. In recent years, molecular genetic studies in Drosophila melanogaster have allowed tremendous progress in understanding how morphogen gradients are formed and maintained, and the mechanism by which receiving cells respond to the gradient.  相似文献   

10.
Executioner caspases such as Caspase-3 and Caspase-7 have long been recognised as the key proteases involved in cell demolition during apoptosis. Caspase activation also modulates signal transduction inside cells, through activation or inactivation of kinases, phosphatases and other signalling molecules. Interestingly, a series of recent studies have demonstrated that caspase activation may also influence signal transduction and gene expression changes in neighbouring cells that themselves did not activate caspases. This review describes the physiological relevance of paracrine Caspase-3 signalling for developmental processes, tissue homeostasis and tissue regeneration, and discusses the role of soluble factors and microparticles in mediating these paracrine activities. While non-cell autonomous control of tissue regeneration by Caspase-3 may represent an important process for maintaining tissue homeostasis, it may limit the efficiency of current cancer therapy by promoting cell proliferation in those cancer cells resistant to radio- or chemotherapy. We discuss recent evidence in support of such a role for Caspase-3, and discuss its therapeutic implication.  相似文献   

11.
Rogulja D  Irvine KD 《Cell》2005,123(3):449-461
One model to explain the relationship between patterning and growth during development posits that growth is regulated by the slope of morphogen gradients. The Decapentaplegic (DPP) morphogen controls growth in the Drosophila wing, but the slope of the DPP activity gradient has not been shown to influence growth. By employing a method for spatial, temporal, and quantitative control over gene expression, we show that the juxtaposition of cells perceiving different levels of DPP signaling is essential for medial-wing-cell proliferation and can be sufficient to promote the proliferation of cells throughout the wing. Either activation or inhibition of the DPP pathway in clones at levels distinct from those in surrounding cells stimulates nonautonomous cell proliferation. Conversely, uniform activation of the DPP pathway inhibits cell proliferation in medial wing cells. Our observations provide a direct demonstration that the slope of a morphogen gradient regulates growth during development.  相似文献   

12.
《Fly》2013,7(3):107-109
ABSTRACT

Recent evidence indicates that protein aggregates can spread between neurons in several neurodegenerative diseases but much remains unknown regarding the underlying mechanisms responsible for this spreading and its role in disease progression. We recently demonstrated that mutant Huntingtin aggregates spread between cells within the Drosophila brain resulting in non-cell autonomous loss of a pair of large neurons in the posterior protocerebrum. However, the full extent of neuronal loss throughout the brain was not determined. Here we examine the effects of driving expression of mutant Huntingtin in Olfactory Receptor Neurons (ORNs) by using a marker for cleaved caspase activity to monitor neuronal apoptosis as a function of age. We find widespread caspase activity in various brain regions over time, demonstrating that non-cell autonomous damage is widespread. Improved understanding of which neurons are most vulnerable and why should be useful in developing treatment strategies for neurodegenerative diseases that involve transcellular spreading of aggregates.  相似文献   

13.
14.
The importance of morphogens is a central concept in developmental biology. Multiple-fate patterning and the robustness of the morphogen gradient are essential for embryo development. The ways by which morphogens diffuse from a local source to form long distance gradients can differ from one morphogen to the other, and for the same morphogen in different organs. This paper will study the mechanism by which morphogens diffuse through the aid of membrane-associated non-receptors and will investigate how the membrane-associated non-receptors help the morphogen to form long distance gradients and to achieve good robustness. Such a mechanism has been reported for some morphogens that are rapidly turned over. We will establish a set of reaction-diffusion equations to model the dynamical process of morphogen gradient formation. Under the assumption of rapid morphogen degradation, we discuss the existence, uniqueness, local stability, approximation solution, and the robustness of the steady-state gradient. The results in this paper show that when the morphogen is rapidly turned over, diffusion of the morphogen through membrane-associated non-receptors is a possible strategy to form a long distance multiple-fate gradient that is locally stable and is robust against the changes in morphogen synthesis rate.  相似文献   

15.
During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.Embryonic development involves many spatial and temporal patterns of cell and tissue organization. These patterning processes are controlled by gradients of morphogens, the “form-generating substances” (Tabata and Takei 2004; Lander 2007). Secreted morphogen molecules, including members of Wnt, Hedgehog (Hh), and transforming growth factor-β (TGF-β) families, are generated from organizing centers and form concentration gradients to specify distinct cell fates in a concentration-dependent manner. Understanding how morphogen gradients are established during development has been a central question in developmental biology. Over the past decade, studies in both Drosophila and vertebrates have yielded important insights in this field. One of the important findings is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. In this review, we first discuss various models for morphogen movement. Then, we focus on the functions of HSPGs in morphogen movement, signaling, and trafficking.  相似文献   

16.
The amphibian embryo provides a powerful model system to study morphogen gradients because of the ease with which it is possible to manipulate the early embryo. In particular, it is possible to introduce exogenous sources of morphogen, to follow the progression of the signal, to monitor the cellular response to induction, and to up- or down-regulate molecules that are involved in all aspects of long-range signaling. In this article, I discuss the evidence that gradients exist in the early amphibian embryo, the way in which morphogens might traverse a field of cells, and the way in which different concentrations of morphogens might be interpreted to activate the expression of different genes.The idea that a morphogen gradient activates the expression of different genes at different concentrations was perhaps stated most clearly by Wolpert''s French flag model, in which a graded signal activates the expression of “blue,” “white,” and “red” genes at high, intermediate, and low concentrations (Wolpert 1969). Since that original work, great progress has been made in identifying morphogens and their target genes and it is now clear that the spatial pattern of gene expression in the developing embryo is frequently established by graded signals of this sort. But many questions remain, and in particular little is known about how gradients are established in the embryo with the necessary precision and how cells interpret different concentrations of morphogen to activate different genes. I discuss these issues with respect to mesoderm induction in the developing amphibian embryo.  相似文献   

17.
Morphogens are signaling molecules that are secreted by a localized source and spread in a target tissue where they are involved in the regulation of growth and patterning. Both the activity of morphogenetic signaling and the kinetics of ligand spreading in a tissue depend on endocytosis and intracellular trafficking. Here, we review quantitative approaches to study how large-scale morphogen profiles and signals emerge in a tissue from cellular trafficking processes and endocytic pathways. Starting from the kinetics of endosomal networks, we discuss the role of cellular trafficking and receptor dynamics in the formation of morphogen gradients. These morphogen gradients scale during growth, which implies that overall tissue size influences cellular trafficking kinetics. Finally, we discuss how such morphogen profiles can be used to control tissue growth. We emphasize the role of theory in efforts to bridge between scales.A fundamental challenge in biology is to understand how morphologies and complex patterns form in multicellular systems by the collective organization of many cells. Cells divide and undergo apoptosis, and they communicate via signaling pathways that use molecules as information carriers. In tissues, large-scale patterns of gene expression emerge from the coordinated signaling activity and response of many cells. The establishment of such patterns is often guided by long-range concentration profiles of morphogens. Cell divisions and cell rearrangements must be coordinated over large distances to achieve specific tissue sizes and shapes. To unravel how molecular processes and interactions can eventually be responsible for the formation of structures and patterns in tissues during development, it is important to study processes at different scales and understand how different levels of organization are connected. Such an approach becomes strongest if it involves a combination of quantitative experimental studies with theory.In the present article, we discuss several such approaches on different scales with a particular emphasis on theory. Starting from the kinetic and dynamic properties of endosomal networks inside a cell, we discuss transport processes in a tissue that can be related to kinetic trafficking parameters. Such transport processes are then responsible for the formation of graded morphogen concentration profiles. To permit scalable patterns in tissues of different sizes, it has been suggested that morphogen gradients scale during growth. This can be achieved on the tissue level by feedback systems that are sensitive to tissue size and regulate, for example, morphogen degradation. Finally, morphogen gradients that scale with tissue size can provide a system to robustly organize cell division in a large tissue and generate homogeneous growth. Theory can play an important role to bridge scales and understand how molecular and cellular processes can control pattern formation and tissue growth on larger scales.Morphogens are signaling molecules that are secreted in specific regions of developing tissues and can induce signaling activity far from their source. They typically form graded concentration profiles and therefore endow cells with positional information (cells can obtain information about their position in a tissue). Thus, they can guide cells to differentiate into complex morphological patterns. Morphogens also control cell growth and cell division. Because they control both patterning and growth, they may play a key role to coordinate these two processes. Such coordination is important because the size of morphological patterns must adjust during growth, whereas growth influences such patterns. A well-studied morphogen is Decapentaplegic (Dpp), which controls morphogenesis in the imaginal wing disc of developing Drosophila. Consequently, mutations in Dpp or defects in the trafficking pathways that control its graded concentration profiles and signaling affect the formation and structure of the adult wing.The study of morphogens was traditionally approached from a genetic perspective: Which gene products behave like morphogens? Which mutants affect patterning and growth? The realization that morphogens typically operate by a gradient of concentration raised the question of how morphogen gradients are generated. It became clear that the cellular trafficking of morphogens is a key issue for the generation of morphogen profiles. Morphogens are secreted ligands that bind receptors in the plasma membrane. The secretion of the ligands and the concentrations of receptor, ligand, and receptor/ligand complex at the plasma membrane are governed by their trafficking in the cell by vesicular transport. In particular, it was shown that trafficking through the endocytic pathway has an important impact on the formation of morphogen gradients (reviewed in Gonzalez-Gaitan 2003; see Bökel and Brand 2014). This is, to a large extent, how the cells respond to morphogens and contribute to set their local concentrations. To understand functions of morphogens in a tissue, we need to study how the gradient is formed. This, in turn, requires insights into morphogen trafficking through the endocytic pathway. The problem of morphogen behavior, therefore, becomes a problem spanning several levels of complexity: the organ level, the tissue level, the cell level, the organelle level, and the molecular level. Theoretical approaches motivated by physics combined with quantitative experimental approaches provide an ideal framework to understand how these different levels of complexity are intertwined.Two recent discoveries highlighted such integration. (1) The observation that profiles of the morphogen Dpp scale during growth, which implies that the rate of Dpp degradation mediated by the endocytic pathway of each of the cells in the tissue depends on the size of the overall tissue. This suggests that two levels of complexity are linked because cellular trafficking receives cues about the global tissue size. (2) As a result of the changes of the degradation rate that leads to gradient scaling, cells receive an increasing level of signaling. This, in turn, can be used by the cells to decide when to divide. This regulation again involves two levels of complexity because regulation at the endocytic pathway determines the growth properties of the tissue and, ultimately, its final size.In the following, we discuss quantitative approaches to study cellular signaling processes on different scales. Here, the aim is to understand how patterns on large scales can emerge during development from molecular processes and signaling pathways that involve endocytosis and cellular trafficking. We begin by describing trafficking of ligands in the endocytic pathway. We then consider the situation of a morphogen ligand and its impact in gradient formation. Subsequently, we discuss how gradient scaling might be realized. Finally, we discuss how such scaling processes play an important role in the regulation of morphogenetic growth.  相似文献   

18.
19.
Few mechanistic ideas from the pre-molecular era of biology have had as enduring an impact as the morphogen concept. In the classical view, cells in developing embryos obtain positional information by measuring morphogen concentrations and comparing them with fixed concentration thresholds; as a result, graded morphogen distributions map into discrete spatial arrangements of gene expression. Recent studies on Hedgehog and other morphogens suggest that establishing patterns of gene expression may be less a function of absolute morphogen concentrations, than of the dynamics of signal transduction, gene expression, and gradient formation. The data point away from any universal model of morphogen interpretation and suggest that organisms use multiple mechanisms for reading out developmental signals in order to accomplish specific patterning goals.  相似文献   

20.
Growth and patterning during Drosophila wing development are mediated by signaling from its dorso-ventral (D/V) organizer. Wingless is expressed in the D/V boundary and functions as a morphogen to activate target genes at a distance. Wingless pathway and thereby D/V signaling is negatively regulated by the homeotic gene Ultrabithorax (Ubx) to mediate haltere development. In an enhancer-trap screen to identify genes that show differential expression between wing and haltere discs, we identified CG32062, which codes for a RNA-binding protein. In wing discs, CG32062 is expressed only in non-D/V cells. CG32062 expression in non-D/V cells is dependent on Notch-mediated signaling from the D/V boundary. However, CG32062 expression is independent of Wingless function, thus providing evidence for a second long-range signaling mechanism of the D/V organizer. In haltere discs, CG32062 is negatively regulated by Ubx. The non-cell autonomous nature of Ubx-mediated repression of CG32062 expression suggests that the novel component of D/V signaling is also negatively regulated during haltere specification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号