首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The increase in spermidine N-acetyltransferase activity in rat liver produced by carbon tetrachloride was completely prevented by simultaneous treatment with inhibitors of protein and nucleic acid synthesis suggesting that the increase results from the synthesis of new protein rather than the release of the enzyme from a cryptic inactive form. Treatment with cycloheximide 2 h after carbon tetrachloride also completely blocked the rise in spermidine N-acetyltransferase seen 4 h later. Such treatment completely prevented the fall in spermidine and rise in putrescine in the liver 6 h after carbon tetrachloride confirming the importance of the induction of spermidine N-acetyltransferase in the conversion of spermidine into putrescine. When cycloheximide was administered to rats in which spermidine N-acetyltransferase activity had been stimulated by prior treatment with carbon tetrachloride or thioacetamide, the activity was lost rapidly showing that the enzyme protein has a rapid rate of turnover. The half-life for the enzyme in thioacetamide-treated rats was 40 min, whereas the half-life for ornithine decarboxylase (which is well known to turn over very rapidly) was 27 min. In carbon tetrachloride-treated rats the rate or protein degradation was reduced and the half-life of spermidine N-acetyltransferase was 155 min and that for ornithine decarboxylase was 65 min. It appears that three of the enzymes involved in the synthesis and interconversion of putrescine and spermidine namely, ornithine decarboxylase, S-adenosylmethionine decarboxylase and spermidine N-acetyltransferase have rapid rates of turnover and that polyamine levels are regulated by changes in the amount of these enzymes.  相似文献   

2.
During the yeast-to-hyphae transition of the dimorphic phycomycete Mucor racemosus, there was a 30- to 50-fold increase in the activity of ornithine decarboxylase. Increased enzyme activity preceded the emergence of germ tubes and reached a maximum before conversion was completed. Subsequently, enzyme levels rapidly declined, despite the continuation of mycelial growth. Both putrescine and spermidine blocked the enzyme activity response. Protein synthesis was required for the increase in enzyme activity during morphogenesis. A combination of actinomycin D and netropsin inhibited ribonucleic acid synthesis but failed to inhibit the increase in ornithine decarboxylase activity. There was a twofold increase in the enzyme half-life during morphogenesis with either trichodermin or verrucarin to inhibit protein synthesis.  相似文献   

3.
Polyamine pools were measured under various conditions of high and low concentrations of cytosolic ornithine with the wild-type and mutant strains of Neurospora crassa. In minimal medium, the wild-type strain has 1 to 2 nmol of putrescine and approximately 14 nmol of spermidine per mg (dry weight); no spermine is found in N. crassa. Exogenous ornithine was found to cause a rapid, but quickly damped, increase in the rate of polyamine synthesis. This effect was greater in a mutant (ota) unable to catabolize ornithine. No turnover of polyamines was detected during exponential growth. Exogenous spermidine was not taken up efficiently by N. crassa; thus, the compound could not be used directly in studies of regulation. However, by nutritional manipulation of a mutant strain, aga, lacking arginase, cultures were starved for ornithine and thus ultimately for putrescine and spermidine. During ornithine starvation, the remaining putrescine pool was not converted to spermidine. The pattern of polyamine synthesis after restoration of ornithine to the polyamine-deprived aga strain indicated that, in vivo, spermidine regulates polyamine synthesis at the ornithine decarboxylase reaction. The results suggest that the regulatory process is a form of negative control which becomes highly effective when spermidine exceeds its normal level. The possible relationship between the regulation of polyamine synthesis and the ratio of free to bound spermidine is discussed.  相似文献   

4.
We have studied the enzymes and genes involved in the biosynthesis of putrescine, spermidine, and spermine in Saccharomyces cerevisiae. Mutants have been isolated with defects in the biosynthetic pathway as follows: spe10 mutants, deficient in ornithine decarboxylase, cannot make putrescine, spermidine, or spermine; spe2 mutants, lacking S-adenosylmethionine decarboxylase, cannot make spermidine or spermine; spe3 mutants, lacking putrescine aminopropyltransferase, cannot make spermidine or spermine; and spe4 and spe40 mutants, lacking spermidine aminopropyltransferase, contain no spermine and permit growth of spe10 mutants. Studies with these mutants have shown that in yeast: 1) polyamines are absolutely required for growth; 2) putrescine is formed only by decarboxylation or ornithine; 3) two separate aminopropyltransferases are required for spermidine and spermine synthesis; 4) spermine and spermidine are important in the regulation of ornithine decarboxylase and the amines exert this control by a posttranslational modification of the enzyme; and 5) spermidine or spermine is essential for sporulation of yeast and for the maintenance of the double-stranded RNA killer plasmid. Recent studies in amine-deficient mutants of Escherichia coli have shown an important role of the polyamines in protein synthesis in vivo.  相似文献   

5.
Polyamine metabolism in potassium-deficient bacteria   总被引:3,自引:0,他引:3       下载免费PDF全文
The metabolism of polyamines was studied in K(+)-dependent strains of Escherichia coli. When these stringent organisms were in a medium containing Na(+) instead of K(+), protein synthesis was arrested, but synthesis of ribonucleic acid continued as it would in a relaxed organism. The Na(+) medium inhibited synthesis of spermidine and S-adenosylmethionine. However, the synthesis of putrescine was accelerated at least five- to eightfold. Exogenous ornithine doubled even this rate of putrescine synthesis but did not increase the low level of putrescine synthesis in the K(+) medium. In K(+) or Na(+) media, with or without 0.3 mm arginine, putrescine was derived almost entirely from ornithine via ornithine decarboxylase. Addition of spermidine (5 mm) to a Na(+) culture markedly inhibited putrescine synthesis. The ornithine decarboxylase of an extract of a K(-)-dependent strain prepared at low ionic strength was separated from ribosomes, deoxyribonucleic acid, and associated polyamines by centrifugation, and from many ions by ultrafiltration and fractionation on Sephadex G-100. Addition of Na(+) and K(+) salts to 200 mm was markedly inhibitory. The combined reductions both in synthesis of the inhibitor spermidine and in intracellular ionic strength may explain the in vivo activation of this enzyme.  相似文献   

6.
The polyamine path of Neurospora crassa originates with the decarboxylation of ornithine to form putrescine (1,4-diaminobutane). Putrescine acquires one or two aminopropyl groups to form spermidine or spermine, respectively. We isolated an ornithine decarboxylase-deficient mutant and showed the mutation to be allelic with two previously isolated polyamine-requiring mutants. We here name the locus spe-1. The three spe-1 mutants form little or no polyamines and grow well on medium supplemented with putrescine, spermidine, or spermine. Cadaverine (1,5-diaminopentane), a putrescine analog, supports very slow growth of spe-1 mutants. An arginase-deficient mutant (aga) can be deprived of ornithine by growth in the presence of arginine, because arginine feedback inhibits ornithine synthesis. Like spe-1 cultures, the ornithine-deprived aga culture failed to make the normal polyamines. However, unlike spe-1 cultures, it had highly derepressed ornithine decarboxylase activity and contained cadaverine and aminopropylcadaverine (a spermidine analog), especially when lysine was added to cells. Moreover, the ornithine-deprived aga culture was capable of indefinite growth. It is likely that the continued growth is due to the presence of cadaverine and its derivatives and that ornithine decarboxylase is responsible for cadaverine synthesis from lysine. In keeping with this, an inefficient lysine decarboxylase activity (Km greater than 20 mM) was detectable in N. crassa. It varied in constant ratio with ornithine decarboxylase activity and was wholly absent in the spe-1 mutants.  相似文献   

7.
Translational regulation of mammalian ornithine decarboxylase by polyamines   总被引:19,自引:0,他引:19  
Ornithine decarboxylase, which catalyses the formation of putrescine, is the first and rate-limiting enzyme in the biosynthesis of polyamines in mammalian cells. The enzyme is highly regulated, as indicated by rapid changes in its mRNA and protein during cell growth. Here we report that ornithine decarboxylase is regulated at the translational level by polyamines in difluoromethylornithine-resistant mouse myeloma cells that overproduce the enzyme due to amplification of an ornithine decarboxylase gene. When such cells are exposed to putrescine or other polyamines, there is a rapid and specific decrease in the rate of synthesis of ornithine decarboxylase, assayed by pulse-labeling. Neither the cellular content of ornithine decarboxylase mRNA nor the half-life of ornithine decarboxylase protein is affected. Our results indicate that polyamines negatively regulate the translation of ornithine decarboxylase mRNA, thereby controlling their own synthesis.  相似文献   

8.
We have recently isolated, without using any inhibitors, a mutant of Chinese hamster ovary cell line which greatly overproduces ornithine decarboxylase in serum-free culture. Addition of polyamines (putrescine, spermidine, or spermine, 10 microM) or ornithine (1 mM), the precursor of polyamines, to the culture medium of these cells caused a rapid and extensive decay of ornithine decarboxylase activity. At the same time the activity of S-adenosylmethionine decarboxylase showed a less pronounced decrease. Notably, the polyamine concentrations used were optimal for growth of the cells and caused no perturbation of general protein synthesis. Spermidine and spermine appeared to be the principal regulatory amines for both enzymes, but also putrescine, if accumulated at high levels in the cells, was capable of suppressing ornithine decarboxylase activity. The amount of ornithine decarboxylase protein (as measured by radioimmunoassay) declined somewhat more slowly than the enzyme activity, but no more than 10% of the loss of activity could be ascribed to post-translational modifications or inhibitor interaction. Some evidence for inactivation through ornithine decarboxylase-antizyme complex formation was obtained. Gel electrophoretic determinations of the [35S]methionine-labeled ornithine decarboxylase revealed a rapid reduction in the synthesis and acceleration in the degradation of the enzyme after polyamine additions. No decrease in the amounts of the two ornithine decarboxylase-mRNA species, hybridizable to a specific cDNA, was detected, suggesting that polyamines depressed ornithine decarboxylase synthesis by selectively inhibiting translation of the message.  相似文献   

9.
The genetics of polyamine synthesis in Neurospora crassa   总被引:3,自引:0,他引:3  
New mutations of the polyamine pathway of Neurospora crassa fell into three categories. The majority affected ornithine decarboxylase and lay at the previously defined spe-1 locus. One mutation, JP100, defining the new spe-2 locus, eliminated S-adenosyl-methionine decarboxylase and led to putrescine accumulation. Revertants of this mutation suggested that the locus encodes the enzyme. Two other mutations, LV105 and JP120, defined a third locus, spe-3. Strains with these mutations also accumulated putrescine and were presumed to lack spermidine synthase activity, which catalyzes the formation of spermidine from putrescine and decarboxylated S-adenosylmethionine. The three spe loci lay within about 20 map units of one another on the right arm of Linkage Group V in the order: centromere-spe-2-spe-1-spe-3. The requirement for spermidine for growth was much less in spe-2 and spe-3 mutants than in spe-1 mutants, which do not accumulate putrescine. This suggested that putrescine fulfills many, but not all, of the functions of spermidine, or that high levels of putrescine render spermidine more effective in its essential roles.  相似文献   

10.
Adjustment of polyamine contents in Escherichia coli.   总被引:7,自引:2,他引:5       下载免费PDF全文
Adjustment of polyamine contents in Escherichia coli was studied with strains of Escherichia coli producing normal (DR112) and excessive amounts of ornithine decarboxylase [DR112(pODC)] or S-adenosylmethionine decarboxylase [DR112(pSAMDC)]. Although DR112(pODC) produced approximately 70 times more ornithine decarboxylase than DR112 did, the amounts of polyamines in the cells of both strains did not change significantly. The amounts of polyamines in DR112(pODC) were adjusted by excretion of excessive amounts of putrescine to the medium. When ornithine was deficient in cells, polyamine contents in DR112(pODC) were much higher than those in DR112, although polyamine contents were low in both strains. This indicates that large amounts of ornithine decarboxylase increased the utilization of ornithine for putrescine synthesis. During ornithine deficiency, strain DR112 produced 3.4 times more ornithine decarboxylase. Strain DR112(pSAMDC) produced seven times more S-adenosylmethionine decarboxylase than DR112 did. In DR112(pSAMDC) an increase (40%) in spermidine content, a decrease (35%) in putrescine content, and no significant excretion of putrescine and spermidine were observed. The amount of ornithine decarboxylase in DR112(pSAMDC) was approximately 30% less than that in DR112. In addition, S-adenosylmethionine decarboxylase activity was strongly inhibited by spermidine. A possible regulatory mechanism to maintain polyamine contents in Escherichia coli is discussed based on the results.  相似文献   

11.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.  相似文献   

12.
The control of ornithine decarboxylase activity by antizyme was studied during early germination of jute seeds(Corchorus olitorius). When 2 mM of putrescine and spermidine were applied to the germinating medium, the enzyme activity was markedly inhibited (1.7-fold) during 16 h imbibition. This inhibition could be attributed to the formation of an inhibitory protein termed antizyme. The antizyme was partially purified from jute and barley seedlings. The activity of jute ornithine decarboxylase antizyme was weaker than that of barley.  相似文献   

13.
14.
The levels and synthesis of polyamines were investigated in Physarum polycephalum to obtain information about their regulation during growth and differentiation in a lower eukaryote. Putrescine pools rapidly increased 4–5 fold during the change from dormant spherules to growing plasmodia. The activity of ornithine decarboxylase (EC 4.1.1.17), which converts ornithine to putrescine, reflected this rapid change in the level of putrescine. Spermidine levels were closely correlated with protein concentrations during differentiation due to variations in the activity of S-adenosyl-l-methionine decarboxylase which is involved in the conversion of putrescine to spermidine This enzyme was not stimulated by putrescine, unlike the similar enzyme in other eukaryotes, thereby permitting independent regulation of putrescine and spermidine levels. The high levels of both putrescine and spermidine suggest separate functions for these polyamines in Physarum.The half-lives of ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase were 14 and 21.5 min, respectively. These short half-lives keep the polyamine metabolism under a very tight control as illustrated by the rapid fluctuations in enzyme activity during differentiation and the synchronous mitotic cycle. The step patterns of these unstable enzymes during the mitotic cycle suggest that these enzyme levels are limited by gene dosage.  相似文献   

15.
Ornithine decarboxylase, a highly regulated enzyme of the polyamine pathway, was purified 670-fold from mycelia of Neurospora crassa that were highly augmented for enzyme activity. The enzyme is significantly different from those reported from three other lower eucaryotic organisms: Saccharomyces cerevisiae, Physarum polycephalum, and Tetrahymena pyriformis. Instead, the enzyme closely resembles the enzymes from mammals. The Mr = 110,000 enzyme is a dimer of 53,000 Da subunits, with a specific activity of 2,610 mumol per h per mg of protein. Antisera were raised to the purified enzyme and were rendered highly specific by cross-absorption with extracts of a mutant strain lacking ornithine decarboxylase protein. With the antisera, we show that the inactivation of the enzyme in response to polyamines is proportional to the loss of ornithine decarboxylase protein over almost 2 orders of magnitude. This is similar to the inactivation process in certain mammalian tissues, and different from the process in S. cerevisiae and P. polycephalum, in which enzyme modification, without proportional loss of antigen, accompanies enzyme inactivation. The N. crassa enzyme is therefore suitable as a microbial model for studies of the molecular regulation of the mammalian enzyme.  相似文献   

16.
J L Clark  J L Fuller 《Biochemistry》1975,14(20):4403-4409
Addition of putrescine of spermidine prevents the increase in ornithine decarboxylase activity in cultures of 3T3 cells brought about by pituitary growth factors and results in a rapid, specific, and reversible reduction of enzyme activity in cultures previously stimulated by the growth factors. These effects are not due to polyamine toxicity and do not require other organic medium components. The amines apparently share a single carrier-mediated transport system in 3T3 cells. Methylglyoxal bis(guanylhydrazone), an inhibitor of spermidine synthesis from putrescine was found to also inhibit uptake of each amine. Studies with this drug indicate that each amine is effective without further metabolism. Since ornithine decarboxylase activity decays more rapidly in the presence of each polyamine after addition of camptothecin, the major locus of amine action appears to be in the cytoplasm. However, direct inhibition of the enzyme in vivo by assimilated amines appears to account for at most a small part of the reduction in activity, a conclusion supported by the inability to recover activity in vitro. Also, neither amine seems to act by accelerating enzyme inactivation. When amines are removed from the medium, the subsequent recovery of enzyme activity is totally prevented by trichodermin, an inhibitor of protein synthesis, but is only slightly reduced by camptothecin. It is suggested that both putrescine and spermidine reduce ornithine decarboxylase activity by selectively inhibiting translation.  相似文献   

17.
Spermidine was detected as the major polyamine of Ancylostoma ceylanicum as well as Nippostrongylus brasiliensis. Spermine was present in lower amounts whereas the level of putrescine was even less. S-Adenosylmethionine decarboxylase, a rate-limiting enzyme in the biosynthetic pathway of polyamines, was demonstrated at low levels in both parasites. Decarboxylation of lysine and arginine was absent or negligible and that of ornithine questionable, as the enzyme activity was not inhibited by alpha-difluoromethylornithine while RMI 71,645, an irreversible inhibitor of ornithine aminotransferase, strongly inhibited the liberation of CO2 from ornithine. High activity of ornithine aminotransferase was observed in both the parasites and may interfere with the assay for ornithine decarboxylase. Adults of A. ceylanicum were found to rapidly take up spermidine and spermine from incubation medium while uptake of putrescine was very low. These results indicate that hookworms depend on uptake and interconversion rather than de novo synthesis for their polyamine requirement.  相似文献   

18.
L-Arginine iminohydrolase (arginine deiminase, ADI) from Tetrahymena thermophila was purified approx. 75-fold by means of gel permeation chromatography. The Km of the purified enzyme for L-arginine was 412 +/- 25 microM and L-ornithine inhibited the reaction competitively with a Ki of 985 +/- 105 microM. D-Ornithine was a weak inhibitor with a Ki of greater than 10mM. The polyamines putrescine and spermidine inhibited ADI incompetitively with a Kii of 2.8mM for putrescine and 4.3mM for spermidine. Since the concentrations required for inhibition were within the range of the normal intracellular polyamine concentrations in Tetrahymena (maximally 14mM putrescine and 4mM spermidine), it is suggested that the polyamine effects on ADI are of regulatory nature. Thus, polyamine biosynthesis in Tetrahymena thermophila is regulated not only on the level of ornithine decarboxylase activity, but also on an earlier step, the supply of ODC with substrates.  相似文献   

19.
A potent irreversible inhibitor of S-adenosylmethionine (AdoMet) decarboxylase, S-(5'-adenosyl)-methylthio-2-aminooxyethane (AdoMeSaoe), was used to study the regulatory control of this key enzyme in the polyamine biosynthetic pathway. Treatment of L1210 cells with the inhibitor completely eradicated the growth-induced rise in AdoMet decarboxylase activity, resulting in a marked decrease in cellular content of spermidine and spermine. The putrescine content, on the other hand, was greatly elevated. Although no detectable AdoMet decarboxylase activity was found in the L1210 cells after treatment with AdoMeSaoe, the cells contained 50-fold higher amounts of AdoMet decarboxylase protein, compared to untreated cells during exponential growth. Part of this increase was shown to be due to elevated synthesis of the enzyme. This stimulation appeared to be related to the decrease in cellular spermidine and spermine content, since addition of either one of the polyamines counteracted the rise in AdoMet decarboxylase synthesis. The synthesis rate was determined by immunoprecipitation of labeled enzyme after a short pulse with [35S]methionine. In addition to a protein that co-migrated with pure rat AdoMet decarboxylase (Mr approximately 32,000), the antibody precipitated a somewhat larger labeled protein (Mr approximately 37,000) that most likely represents the proenzyme form. Treatment of the L1210 cells with AdoMetSaoe also gave rise to a marked stabilization of the decarboxylase which contributed to the increase in its cellular protein content. Addition of spermidine did not significantly affect this stabilization, whereas the addition of spermine reduced the half-life of the enzyme to almost that of the control cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号