首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thirty-five single-copy and 17 repetitive sequence DNA probes specific for human chromosome 3 were isolated from human chromosome 3-derived genomic libraries. Seven DNA clones, including three that are polymorphic for BglII or MspI, were mapped by in situ hybridization. Four probes were mapped to 3p subregions and 3 were mapped to 3q subregions. Three of the DNA sequences map to regions overlapping a segment of chromosome 3 (3p14-23) frequently deleted in small cell lung cancer cells. By Southern blot analysis on a deletion hybrid panel, we previously mapped 6 of these probes to three distinct chromosome 3 subregions. Our in situ data support these assignments and more precisely determine the localization of each clone to the following regions: D3S34 (3p14-21), D3S35 (3p21), D3S39 (3p21), D3S40 (3p12-13), D3S37 (3q21-23), and D3S36 (3q21). Clone pL84c, a low repeat sequence clone (approximately 30 copies), was mapped to the 3q21-29 subregion. These DNA clones mapped by in situ hybridization can provide useful landmarks for the ordering and localization of other clones.  相似文献   

2.
The chromosomal location of the human ubiquitin genes has been evaluated by in situ hybridization. Because of the conservation of the ubiquitin sequence, coding-region probes cannot distinguish between specific ubiquitin genes and reveal ubiquitin sequences in a number of different chromosomal regions. The major sites of hybridization with a coding-region probe include 17p11.1-p12, 12p24.2-q24.32, and 2q21-q24, with weaker hybridization over 1p3, 1q4, 2q3, and 13q. Hybridization with a probe isolated from the UbB gene intron indicated that this gene is located within the region 17p11.1-17p12. This region showed the strongest hybridization with the coding-region probe and is presumably also the location of the duplicated UbB pseudogene.  相似文献   

3.
The eukaryotic LAMMER protein kinase family is encoded by at least three loci in the human genome, designated CLK1, 2, and 3. We have mapped these loci to 2q33, 1q21, and 15q24, respectively, by fluorescent in situ hybridization. Additionally, a CLK2 pseudo-gene has been located to 7p15–21. Received: 2 June 1998 / Accepted: 16 July 1998  相似文献   

4.
1. Various hybridization approaches were employed to investigate structural and chromosomal interrelationships between the human cholinesterase genes CHE and ACHE encoding the polymorphic, closely related, and coordinately regulated enzymes having butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities. 2. Homologous cosmid recombination with a 190-base pair 5' fragment from BuChEcDNA resulted in the isolation of four overlapping cosmid clones, apparently derived from a single gene with several introns. The Cosmid CHEDNA included a 700-base pair fragment known to be expressed at the 3' end of BuChEcDNA from nervous system tumors and which has been mapped by in situ hybridization to the unique 3q26-ter position. In contrast, cosmid CHEDNA did not hybridize with full-length AChEcDNA, proving that the complete CHE gene does not include AChE-encoding sequences either in exons or in its introns. 3. The chromosomal origin of BuChE-encoding sequences was further examined by two unrelated gene mapping approaches. Filter hybridization with DNA from human/hamster hybrid cell lines revealed BuChEcDNA-hybridizing sequences only in cell lines including human chromosome 3. However, three BuChEcDNA-homologous sequences were observed at chromosomal positions 3q21, 3q26-ter, and 16q21 by a highly stringent in situ hybridization protocol, including washes at high temperature and low salt. 4. These findings stress the selectivity of cosmid recombination and chromosome blots, raise the possibility of individual differences in BuChEcDNA-hybridizing sequences, and present an example for a family highly similar proteins encoded by distinct, nonhomologous genes.  相似文献   

5.
Summary Two cases of trisomy 21q223 with the Down's phenotype were analysed by in situ hybridization with specific probes previously located in the sub-bands 21q221 (SOD-A) and 21q223 (BCEI and COL6A). These studies give evidence that the clinical picture of Down's syndrome is at least to a great extent correlated with trisomy for the 21q223 band.  相似文献   

6.
Localization of the gene for acetyl-CoA carboxylase to human chromosome 17   总被引:2,自引:0,他引:2  
In situ hybridization was used to localize a cDNA probe of the acetyl-CoA carboxylase gene to human metaphase chromosomes. A significant proportion of the grains were situated over chromosome band 17q21. In situ hybridization to a t(6;17)(p25;q21.33) confirmed the location of the gene proximal to 17q21.33.  相似文献   

7.
Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, we mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q42, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other active genes, non-aldose reductase homologous sequences, or pseudogenes.  相似文献   

8.
The gene which encodes the beta subunit of the S100 protein was mapped to 21q22.2----q22.3 by in situ hybridization. Concurrently, a subtle translocation involving this region of chromosome 21 and 9q34 was confirmed.  相似文献   

9.
A combination of Southern blot analysis on a panel of tumor-derived somatic cell hybrids and fluorescence in situ hybridization (FISH) techniques was used to map a series of DNA markers relative to the 1q21 breakpoint of the renal cell carcinoma (RCC)-associated (X;1)(p11;q21) translocation. This breakpoint maps between several members of the S100 family which are clustered in the 1q21 region and a conserved region between man and mouse containing the markers SPTA1-CRP-APCS-FcER1A-ATP1A2-APOA2. The location of the breakpoint coincides with the transition of a region of synteny of human chromosome 1 with mouse chromosomes 3 and 1. Received: 10 November 1995 / Revised: 3 February 1996  相似文献   

10.
Localization of the gene encoding human Factor V to chromosome 1q21–25   总被引:2,自引:0,他引:2  
The gene encoding human coagulation Factor V (FV), one of the cofactors in the blood clotting process, has been mapped to chromosome 1 by both Southern hybridization to DNA from human-hamster somatic cell hybrids and in situ hybridization. The whole plasmid pUC3A containing a 1.5-kb cDNA sequence for FV was 32P-labeled for Southern analysis and 3H-labeled for in situ hybridization to metaphase chromosomes. The results localized the FV gene to the region of 1q21-25.  相似文献   

11.
Cytogenetic syndrome involving bands 3q21 and 3q26, known as "3q21q26 syndrome" has been observed in adult patients with acute myelogenous leukemia (0.5-2%), chronic myelogenous leukemia in blast crisis (20%), myelodysplastic syndromes and myeloproliferative disorders. In the present study bone marrow samples from two boys (12 and 16 years), diagnosed with CML and AML respectively, were investigated using conventional cytogenetic methods, interphase "multipoint" fluorescence in situ hybridization (FISH), dual color-FISH and multiplex FISH. The "multipoint" FISH analysis identified in de novo childhood AML case an inv(3)(q21q26) and a complex 3q rearrangement including inversion and duplication in the CML case. The "3q21q26 syndrome" is associated with normal or elevated platelet counts with marked abnormalities of megakaryocytopoiesis, involvement of multiple hematopoietic lineages. The affected patients were resistant to conventional chemotherapy and had a short survival. This syndrome is very rare in de novo childhood AML, and simultaneous presence of 3q inversion and duplication, to our knowledge, has not yet been identified in hematological malignancies. The results of our study emphasize the importance of classical and modern cytogenetic analysis in the diagnosis of hematologic malignancies, because in the majority of cases they can provide additional diagnostic information for the clinicians in deciding the best therapeutic approach, precise classification and prognosis of the disease.  相似文献   

12.
Fluorescence in situ hybridization (FISH) of chromosome 21 specific yeast artificial chromosome (YAC) clones after Alu-PCR (polymerase chain reaction) amplification has been used to find new region-specific DNA probes for the heterochromatic region of chromosome 21. Six overlapping YAC clones from a pericentromeric contig map (region 21cen-21q11) were analyzed. Four YAC clones were characterized as hybridizing to several chromosomal locations. They are, therefore, either chimeric or shared by different chromosomes. Two of them containing alphoid satellite DNA, are localized at the centromeric regions of chromosomes 13 and 21 (clone 243A11), and on 13cen, 21cen and 1q3 (clone 781G5); the two others are localized at both 21q11 and 13q2 (clone 759D3), and at 18p (clone 770B3). Two YACs were strongly specific for chromosome 21q11 only (clones 124A7 and 881D2). These YACs were used effectively as probes for identifications of chromosome 21 during metaphase and interphase analysis of 12 individuals, including three families with Down syndrome offspring, and 6 amniocyte samples. The location of YAC clones on 21q11 close to the centromeric region allows the application of these clones as molecular probes for the analysis of marker chromosomes with partial deletions of the long arm as well as for pre- and postnatal diagnosis of trisomy 21 when alphoid or more distal region-specific DNA probes are uninformative. Overlapping YAC clones covering human chromosome 21q may be systematically used to detect a set of band-specific DNA probes for molecular-cytogenetic application.  相似文献   

13.
Chromosome localization of human ARH genes, a ras-related gene family   总被引:2,自引:0,他引:2  
The human ARH genes (previously called RHO) share several properties with the ras gene family. Three members of the ARH family, the H6, H9, and H12 genes, have been localized to human chromosomes 2, 5, and 3, respectively. Analysis of DNAs from a rodent-human somatic cell hybrid panel demonstrates linkage of H6 to chromosome region 2p12----2pter and H9 to region 5q33----5qter. In situ chromosome hybridization also showed that the primary site for H9 is in the 5q31----qter region. The H12 gene was some-what difficult to localize using rodent-human hybrids because the probe detects a family of rodent genes as homologous to the human probe as in the human cognate gene. However, chromosome in situ hybridization revealed grains clustered in region 3p14----3p22 with a significant peak in band 3p21. We conclude that H6 is in 2p12----pter, H9 in 5q31----5qter, and H12 in 3p21.  相似文献   

14.
Down syndrome (DS) is a major cause of mental retardation and heart disease. Although it is usually caused by the presence of an extra chromosome 21, a subset of the diagnostic features may be caused by the presence of only band 21q22. We now present evidence that significantly narrows the chromosomal region responsible for several of the phenotypic features of DS. We report a molecular and cytogenetic analysis of a three-generation family containing four individuals with clinical DS as manifested by the characteristic facial appearance, endocardial cushion defect, mental retardation, and probably dermatoglyphic changes. Autoradiograms of quantitative Southern blots of DNAs from two affected sisters, their carrier father, and a normal control were analyzed after hybridization with two to six unique DNA sequences regionally mapped on chromosome 21. These include cDNA probes for the genes for CuZn-superoxide dismutase (SOD1) mapping in 21q22.1 and for the amyloid precursor protein (APP) mapping in 21q11.2-21.05, in addition to six probes for single-copy sequences: D21S46 in 21q11.2-21.05, D21S47 and SF57 in 21q22.1-22.3, and D21S39, D21S42, and D21S43 in 21q22.3. All sequences located in 21q22.3 were present in three copies in the affected individuals, whereas those located proximal to this region were present in only two copies. In the carrier father, all DNA sequences were present in only two copies. Cytogenetic analysis of affected individuals employing R and G banding of prometaphase preparations combined with in situ hybridization revealed a translocation of the region from very distal 21q22.1 to 21qter to chromosome 4q. Except for a possible phenotypic contribution from the deletion of chromosome band 4q35, these data provide a molecular definition of the minimal region of chromosome 21 which, when duplicated, generates the facial features, heart defect, a component of the mental retardation, and probably several of the dermatoglyphic changes of DS. This region may include parts of bands 21q22.2 and 21q22.3, but it must exclude the genes S0D1 and APP and most of band 21q22.1, specifically the region defined by S0D1, SF57 and D21S47.  相似文献   

15.
The gene for 5-aminolevulinate synthase (ALAS) has been mapped to 3pter-3q13.2 by Southern blot hybridization analysis of a mouse/human hybrid cell panel. In situ hybridization maps the gene to 3p21, distal to the common fragile site at 3p14.2 (FRA3B). The mapping of this gene to an autosome makes it improbable that it is the site of the primary defect in X-linked sideroblastic anemia.  相似文献   

16.
M Tsukahara  A Yoshida 《Genomics》1989,4(2):218-220
Human class I alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1; ADH) is the major enzyme involved in ethanol oxidation. Three highly homologous genes govern the synthesis of three types of subunits which form several ADH isozymes. The locus for class I ADH loci was previously assigned to q21-25 of chromosome 4 by somatic cell hybridization techniques. Analysis of grain positions by in situ hybridization of chromosomes indicated that the ADH cluster locus is on 4q21-23, probably 4q22.  相似文献   

17.
We previously reported molecular karyotype analysis of invasive breast tumour core needle biopsies by comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) (Walker et al, Genes Chromosomes Cancer, 2008 May;47(5):405-17). That study identified frequently recurring gains and losses involving chromosome bands 8q22 and 8p21, respectively. Moreover, these data highlighted an association between 8q22 gain and typically aggressive grade 3 tumors. Here we validate and extend our previous investigations through FISH analysis of tumor touch imprints prepared from excised breast tumor specimens. Compared to post-surgical tumor excisions, core needle biopsies are known to be histologically less precise when predicting tumor grade. Therefore investigating these chromosomal aberrations in tumor samples that offer more reliable pathological assessment is likely to give a better overall indication of association. A series of 60 breast tumors were screened for genomic copy number changes at 8q22 and 8p21 by dual-color FISH. Results confirm previous findings that 8p loss (39%) and 8q gain (74%) occur frequently in invasive breast cancer. Both absolute quantification of 8q22 gain across the sample cohort, and a separate relative assessment by 8q22:8p21 copy number ratio, showed that the incidence of 8q22 gain significantly increased with grade (p = 0.004, absolute and p = 0.02, relative). In contrast, no association was found between 8p21 loss and tumor grade. These findings support the notion that 8q22 is a region of interest for invasive breast cancer pathogenesis, potentially harboring one or more genes that, when amplified, precipitate the molecular events that define high tumor grade.  相似文献   

18.
Seven loci that have been previously mapped to human and mouse chromosomes have now been regionally assigned to six sheep chromosomes. Nerve growth factor β (NGFB), antigen CD3 ζ polypeptide (CD3Z), inhibin β A (INHBA), estrogen receptor (ESR), rhodopsin (RHO), insulin-like growth factor 2 (IGF2), and myelin basic protein (MBP) were mapped by in situ hybridization to sheep chromosomes 1p24-p21, 1p14-p11, 4q26-q31, 8q25-q27, 19q23-qter, 21q21-qter, and 23q11-q12.3, respectively. ESR, RHO, IGF2, and MBP are the first markers to be assigned to their respective sheep chromosomes. These new data allow the previously unassigned sheep linkage groups H, J, K, and S to be provisionally assigned to chromosomes 21, 19, 4, and 8, respectively. The unassigned sheep syntenic groups U8 and U13 are provisionally assigned to sheep chromosomes 8 and 21, respectively. The new assignments support the emerging picture that there is extensive conservation of human chromosomal segments in the sheep and cattle genomes. The position of another evolutionary breakpoint on human chromosome 1q is suggested.  相似文献   

19.
Genomic single-copy DNA fragments were used to characterize an undetected chromosome translocation in an individual whose metaphase chromosome analysis revealed apparent monosomy 21. Eight RFLPs detected by six probes were used to identify homologous sequences from chromosome 21 in DNA digests from the proband and her parents. These family studies showed that the proband was disomic for the distal region of 21q. Reverse banding and in situ hybridization of chromosome 21-specific probes to metaphase chromosomes from the proband revealed a de novo translocation with breakpoints at 5p13 or 14 and 21q11 or 21. In situ hybridization permitted orientation of the translocated portion of chromosome 21 on the derivative chromosome 5 and, in conjunction with molecular analysis and previous mapping studies, refined the physical map for the long arm of chromosome 21.  相似文献   

20.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号