首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.  相似文献   

8.
Mutations in the GLN3 gene prevented a normal increase in the NAD-glutamate dehydrogenase and glutamine synthetase levels in glutamate-grown Saccharomyces cerevisiae cells, whereas mutations in the URE2 gene resulted in high levels of these enzymes in glumate- and glutamine-grown cells. A ure2 gln3 double mutant had low levels of glutamate dehydrogenase and glutamine synthetase in cells grown on glutamate and glutamine; thus, gln3 mutations were epistatic to the ure2 mutations. The results suggest that the GLN3 product is capable of promoting increases in enzyme levels in the absence of a functional URE2 product and that the URE2 product antagonizes the GLN3 product. The URE2 and GLN3 genes were also found to regulate the level of arginase activity. This regulation is completely independent of the regulation of arginase by substrate induction. The activities of glutamate dehydrogenase, glutamine synthetase, and arginase were higher in cells grown on glutamate as the nitrogen source than they were in cells grown under a nitrogen-limiting condition. It had previously been shown that the levels of these enzymes can be increased by glutamine deprivation. We propose that the URE2-GLN3 system regulates enzyme synthesis, in response to glutamine and glutamate, to adjust the intracellular concentration of ammonia so as to maintain glutamine at the level required for optimal growth.  相似文献   

9.
10.
Mutants of the yeast Saccharomyces cerevisiae have been isolated which fail to derepress glutamine synthetase upon glutamine limitation. The mutations define a single nuclear gene, GLN3, which is located on chromosome 5 near HOM3 and HIS1 and is unlinked to the structural gene for glutamine synthetase, GLN1. The three gln3 mutations are recessive, and one is amber suppressible, indicating that the GLN3 product is a positive regulator of glutamine synthetase expression. Four polypeptides, in addition to the glutamine synthetase subunit are synthesized at elevated rates when GLN3+ cultures are shifted from glutamine to glutamate media as determined by pulse-labeling and one- and two-dimensional gel electrophoresis. The response of all four proteins is blocked by gln3 mutations. In addition, the elevated NAD-dependent glutamate dehydrogenase activity normally found in glutamate-grown cells is not found in gln3 mutants. Glutamine limitation of gln1 structural mutants has the opposite effect, causing elevated levels of NAD-dependent glutamate dehydrogenase even in the presence of ammonia. We suggest that there is a regulatory circuit that responds to glutamine availability through the GLN3 product.  相似文献   

11.
12.
13.
Glutamine synthetase (EC 6.3.1.2) is a key enzyme of ammonium assimilation and recycling in plants where it catalyses the synthesis of glutamine from ammonium and glutamate. In Arabidopsis, five GLN1 genes encode GS1 isoforms. GLN1;2 is the most highly expressed in leaves and is over-expressed in roots by ammonium supply and in rosettes by ample nitrate supply compared with limiting nitrate supply. It is shown here that the GLN1;2 promoter is mainly active in the minor veins of leaves and flowers and, to a lower extent, in the parenchyma of mature leaves. Cytoimmunochemistry reveals that the GLN1;2 protein is present in the companion cells. The role of GLN1;2 was determined by examining the physiology of gln1;2 knockout mutants. Mutants displayed lower glutamine synthetase activity, higher ammonium concentration, and reduced rosette biomass compared with the wild type (WT) under ample nitrate supply only. No difference between mutant and WT can be detected under limiting nitrate conditions. Despite total amino acid concentration was increased in the old leaves of mutants at high nitrate, no significant difference in nitrogen remobilization can be detected using (15)N tracing. Growing plants in vitro with ammonium or nitrate as the sole nitrogen source allowed us to confirm that GLN1;2 is induced by ammonium in roots and to observe that gln1;2 mutants displayed, under such conditions, longer root hair and smaller rosette phenotypes in ammonium. Altogether the results suggest that GLN1;2 is essential for nitrogen assimilation under ample nitrate supply and for ammonium detoxification.  相似文献   

14.
15.
16.
Aaron P. Mitchell 《Genetics》1985,111(2):243-258
Among 41 yeast glutamine auxotrophs, complementation analysis defined a single gene, GLN1, on chromosome 16 between MAK3 and MAK6. Half of the alleles fell into two intragenic complementation classes. No clustering of complementing alleles was found in a fine structure map. Altered glutamine synthetase subunits, including nonsense fragments and charge variants, were identified in several of the mutants, indicating that GLN1 is the structural gene for this enzyme. Negative complementation was observed for almost every allele associated with a protein product and all gln1/+ heterozygotes displayed reduced susceptibility to ammonia repression of the remaining glutamine synthetase activity. This latter observation is explained by the hypothesis that ammonia represses the enzyme only through its metabolism to glutamine. A basis for the two gln1 complementation classes is proposed.  相似文献   

17.
18.
Glutamine synthetase (GS; EC 6.3.1.2) is a key enzyme of nitrogen assimilation, catalyzing the synthesis of glutamine from ammonium and glutamate. In Arabidopsis, cytosolic GS (GS1) was accumulated in roots when plants were excessively supplied with ammonium; however, the GS activity was controlled at a constant level. The discrepancy between the protein content and enzyme activity of GS1 was attributable to the kinetic properties and expression of four distinct isoenzymes encoded by GLN1;1, GLN1;2, GLN1;3 and GLN1;4, genes that function complementary to each other in Arabidopsis roots. GLN1;2 was the only isoenzyme significantly up-regulated by ammonium, which correlated with the rapid increase in total GS1 protein. GLN1;2 was localized in the vasculature and exhibited low affinities to ammonium (Km = 2450 +/- 150 microm) and glutamate (Km = 3.8 +/- 0.2 mm). The expression of the counterpart vascular tissue-localizing low affinity isoenzyme, GLN1;3, was not stimulated by ammonium; however, the enzyme activity of GLN1;3 was significantly inhibited by a high concentration of glutamate. By contrast, the high affinity isoenzyme, GLN1;1 (Km for ammonium < 10 microm; Km for glutamate = 1.1 +/- 0.4 mm) was abundantly accumulated in the surface layers of roots during nitrogen limitation and was down-regulated by ammonium excess. GLN1;4 was another high affinity-type GS1 expressed in nitrogen-starved plants but was 10-fold less abundant than GLN1;1. These results suggested that dynamic regulations of high and low affinity GS1 isoenzymes at the levels of mRNA and enzyme activities are dependent on nitrogen availabilities and may contribute to the homeostatic control of glutamine synthesis in Arabidopsis roots.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号