首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies have shown that thrombomodulin (TM) on endothelial cells is down-regulated by endotoxin, interleukin-1 beta (IL-1 beta), and tumor necrosis factor (TNF). This loss of anti-coagulant potential is thought to be related to the hypercoagulable state in sepsis, inflammation, and cancer. The current studies describe up-regulation of TM in human umbilical vein endothelial cells (HUVECs) by several compounds as judged by increased surface cofactor activity, surface TM antigen, and TM mRNA levels. Surface TM activity was increased by active phorbol esters (10(-8) M, 24-48 h), analogs of cAMP (1-10 mM, 4 h), and forskolin (10(-5) M, 24-48 h). Up-regulation of TM in HUVECs by 4 beta-phorbol 12-myristate 13-acetate (PMA) and dibutyryl cAMP (dBcAMP) was due to de novo synthesis of TM protein resulting from increased TM mRNA levels. The results suggest that protein kinase C and protein kinase A may be involved in cellular regulatory mechanisms for TM expression. In addition, PMA effects on surface TM activity are biphasic, with an initial reduction followed by a significant enhancement. Hence, we propose that compounds capable of increasing intracellular cAMP concentrations in HUVECs may be useful in preventing thrombosis by increasing the anti-thrombotic properties of endothelial cells.  相似文献   

2.
3.
Thrombomodulin is an endothelial membrane anticoagulant protein that is a cofactor for protein C activation. We have evaluated the expression of thrombomodulin in cultured mouse hemangioma cells before and after treatment with phorbol myristate acetate (PMA), an agent that stimulates protein kinase C. We also isolated a cDNA encoding 481 amino acids of mouse thrombomodulin and the entire 3'-untranslated portion of its mRNA. The deduced amino acid sequence of mouse thrombomodulin is similar to those determined for human and bovine thrombomodulin. An S1 nuclease protection assay was used to measure thrombomodulin mRNA in hemangioma cells. The half-life for thrombomodulin mRNA was 8.9 +/- 1.8 h (S.D.) in cells treated with actinomycin D. Treatment with PMA had no effect on thrombomodulin mRNA levels. Thrombomodulin turnover was evaluated by immunoprecipitation of [35S]methionine-labeled thrombomodulin. The t1/2 was 19.8 +/- 3.9 h (S.D.); PMA treatment decreased the t1/2 to 10.9 +/- 1.1 h (S.D.) while increasing the rate of synthesis to a maximum of 190% of control. Protein C cofactor activity on hemangioma cells was reduced 35 +/- 4% by treatment with PMA within 30 min. This decrease was associated with a parallel decline in cell surface thrombomodulin antigen and with enhanced phosphorylation of thrombomodulin on serine residues. We conclude that thrombomodulin is phosphorylated in response to treatment of hemangioma cells with PMA which leads to decreased protein C cofactor activity and both increased degradation and synthesis of thrombomodulin.  相似文献   

4.
Tissue factor (TF) initiates the extrinsic coagulation cascade on the surface of macrophages and endothelial cells. In septic patients, the extrinsic coagulation cascade is activated. When septic patients are febrile, mortality is decreased. The purpose of this study was to investigate the role of elevated temperatures on TF expression by endothelial cells during a sepsis-like challenge. Human endothelial vein cells (HUVECs) were incubated with lipopolysaccharide (LPS) or interleukin-1 beta (IL-1 beta) for 0, 2, 4, 6, or 8 h. At the 0-h time point, some HUVECs were heat shocked at 43 degrees C for 2 h and then recovered at 37 degrees C for 0, 2, 4, or 6 h. Heat-shocked and non-heat-shocked LPS-stimulated HUVECs were analyzed for TF-specific mRNA expression by ribonuclease protection assay (RPA), surface TF expression by flow cytometry, and TF activity by a two-stage clotting assay. Heat shocked LPS-stimulated HUVECs expressed significantly reduced TF-specific mRNA, TF surface protein levels, and TF surface activity when compared with non-heat-shocked, LPS-stimulated HUVECs (p < 0.0125, p < 0.0125, and p < 0.0001, respectively; repeated measures analysis of variance, ANOVA). If heat shock models elevated core temperature, these results suggest that fever may protect the host during sepsis by reducing TF activity on the surface of endothelial cells.  相似文献   

5.
6.
This study investigated the change of transient receptor potential melastatin 7 (TRPM7) expression by high glucose and its role in hyperglycemia induced injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated in the presence or absence of high concentrations of D-glucose (HG) for 72h. RT-PCR, Real-time PCR, Western blotting, Immunofluorescence staining and whole-cell patch-clamp recordings showed that TRPM7 mRNA, TRPM7 protein expression and TRPM7-like currents were increased in HUVECs following exposure to HG. In contrast to D-glucose, exposure of HUVECs to high concentrations of L-glucose had no effect. HG increased reactive oxygen species (ROS) generation, cytotoxicity and decreased endothelial nitric oxide synthase protein expression, which could be attenuated by knockdown of TRPM7 with TRPM7 siRNA. The protective effect of silencing TRPM7 against HG induced endothelial injury was abolished by U0126, an inhibitor of the extracellular signal-regulated kinase signaling pathway. These observations suggest that TRPM7 channels play an important role in hyperglycemia-induced injury of vascular endothelial cells.  相似文献   

7.
Our previous studies showed that platelet-derived growth factor (PDGF) modulated interleukin-1 (IL-1) activity and IL-1 binding to Balb/c3T3 fibroblasts (Bonin, P. D., and Singh, J. P. (1988) J. Biol. Chem. 263, 11052-11055). Subsequent studies have demonstrated an action of PDGF at the level of IL-1 receptor (IL-1R) gene expression. PDGF treatment of Balb/c3T3 cells produces a 10-20-fold stimulation of mRNA for IL-1 receptor. Investigation of the signal transduction pathways shows that activation of either the protein kinase C pathway or the cAMP-mediated pathway leads to the stimulation of IL-1 receptor expression in Balb/c3T3 cells. Treatment of Balb/c3T3 cells with phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, produced an increased 125I-IL-1 binding to cells and stimulation of IL-1R mRNA. Staurosporine, an inhibitor of protein kinase C, blocked the induction of IL-1 binding by PDGF or PMA. Down-regulation of protein kinase C by pretreatment with PMA reduced the subsequent stimulation by PDGF. Chronic treatment with PMA, however, did not produce a complete inhibition of PDGF effect on IL-1R. Further studies showed that the agents that stimulate cAMP accumulation (isobutyl methylxanthine, dibutyryl), directly stimulate adenylate cyclase (forskolin), or activate G protein (choleragen) stimulated 125I-IL-1 binding and IL-1R mRNA accumulation in Balb/c3T3 cells. These studies suggest that potentially two signal transduction pathways mediate IL-1 receptor expression in Balb/c3T3 fibroblasts. Evidence is presented that suggests that stimulation of IL-1R through these two pathways (PMA/PDGF-stimulated and cAMP-stimulated) occurs independent of each other.  相似文献   

8.
Saijonmaa O  Nyman T  Kosonen R  Fyhrquist F 《Cytokine》2000,12(8):1253-1256
OBJECTIVE: To examine the role of oncostatin M (OSM) in the regulation of angiotensin converting enzyme (ACE) in endothelial cells. METHODS: Cultured endothelial cells were incubated with OSM (25-200 pM) for 24 h. Incubations were performed without or with the tyrosine kinase inhibitor, herbimycin (87 nM), or the selective MAP kinase kinase inhibitor, PD98059 (50 microM). ACE amount in intact endothelial cells was measured by an inhibitor binding assay and ACE mRNA levels by RNase protection assay. RESULTS: OSM caused a dose dependent increase in ACE amount and increased the expression of ACE mRNA. The stimulatory effect of OSM was inhibited by pretreatments with herbimycin or PD98059. CONCLUSIONS: OSM induced ACE in cultured HUVECs. Tyrosine kinase and MAPK activation were probably involved in ACE induction. Local induction of ACE by OSM in the vascular wall may be a consequence of inflammatory processes leading to locally increased production of angiotensin II and breakdown of bradykinin.  相似文献   

9.
The effects of cyclic AMP treatment on total cAMP-dependent protein kinase activity in GH3 pituitary tumor cells have been studied. Incubation of cells for 24 h with 1 microM forskolin resulted in a 50% decrease in total cAMP-dependent protein kinase activity which was reversible upon removal of forskolin from culture media. A similar response was observed in GH3 cells treated with 5 ng/ml cholera toxin and 0.5 mM dibutyryl cAMP but not 0.5 mM dibutyryl cGMP. Northern blot analysis demonstrated that the steady-state level of the mRNA for each of the six kinase subunit isoforms studied was not detectably altered after treatment with 1 microM forskolin for 24 h. The concentration of catalytic subunit was also assessed by binding studies using a radiolabeled heat-stable protein kinase inhibitor. Treatment of GH3 cells with 1 microM forskolin for 24 h reduced protein kinase inhibitor binding activity by 50%, consistent with the observed forskolin-induced decrease in total kinase activity. Analysis of endogenous heat-stable protein kinase inhibitor activity in GH3 cell extracts showed no significant difference between forskolin-treated cells and cells maintained under control conditions. To assess possible effects on catalytic subunit degradation, pulse-chase experiments were performed and radiolabeled catalytic subunit was isolated by affinity chromatography. The results demonstrated that treatment of cells with chlorophenylthio-cAMP detectably increased the apparent degradation of radiolabeled catalytic subunit. The increased degradation of the catalytic subunit was sufficient to account for the observed decreases in kinase activity. These results suggest that relatively long term cAMP treatment can alter total cAMP-dependent protein kinase activity through effects to alter the degradation of the catalytic subunit of the enzyme.  相似文献   

10.
11.
Ornithine decarboxylase activity was assessed in serum-deprived quiescent NIH-3T3 murine fibroblasts after exposure to a variety of growth-promoting factors. Ornithine decarboxylase activity increased after treatment with phorbol 12-myristate 13-acetate (PMA), fetal calf serum, bovine pituitary fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), and the synthetic diacyglycerol sn-1,2-dioctanolyglycerol but not after treatment with epidermal growth factor, insulin, 4 alpha-phorbol 12,13-didecanoate, sn-1,2-dibutyrylglycerol, or the calcium ionophore A23187. Activity peaked at 3-4 h and returned to basal levels after 8 h. To determine the importance of protein kinase C in this increase, cells were pretreated with PMA for 16 h to make the cells effectively deficient in protein kinase C; this deficiency was documented by direct measurement of enzyme activity and immunoreactivity. The ornithine decarboxylase response to each mitogen was then compared in cells pretreated with PMA or control conditions. PMA pretreatment abolished the increase in ornithine decarboxylase activity due to additional PMA and decreased but did not eliminate the ability of serum, FGF, and PDGF to cause increases in ornithine decarboxylase activity. Similarly, pretreatment with PMA abolished the ability of additional PMA to increase ornithine decarboxylase mRNA levels but did not prevent the increases in these mRNA levels caused by FGF or serum. These data suggest that the increases in ornithine decarboxylase activity and mRNA levels that occur in quiescent fibroblasts in response to serum, FGF, or PDGF are due to activation of at least two separate pathways, one involving protein kinase C and the other independent of protein kinase C.  相似文献   

12.
Cardiovascular diseases involve critical mechanisms including impaired nitric oxide (NO) levels and abnormal matrix metalloproteinase (MMP) activity. While NO downregulates MMP expression in some cell types, no previous study has examined whether NO downregulates MMP levels in endothelial cells. We hypothesized that NO donors could attenuate MMP-9 production by human umbilical vein endothelial cells (HUVECs) as a result of less NFκB activation or cyclic GMP (cGMP)-mediated mechanisms. We studied the effects of DetaNONOate (10–400 μM) or SNAP (50–400 μM) on phorbol 12-myristate 13-acetate (PMA; 10 nM)-induced increases in MMP-9 activity (by gel zymography) or concentrations (by ELISA) as well as on a tissue inhibitor of MMPs’ (TIMP)-1 concentrations (by ELISA) in the conditioned medium of HUVECs incubated for 24 h with these drugs. We also examined whether the irreversible inhibitor of soluble guanylyl cyclase ODQ modified the effects of SNAP or whether 8-bromo-cGMP (a cell-permeable analog of cGMP) influenced PMA-induced effects on MMP-9 expression. Total and phospho-NFκB p65 concentrations were measured in HUVEC lysates to assess NFκB activation. Both NO donors attenuated PMA-induced increases in MMP-9 activity and concentrations without significantly affecting TIMP-1 concentrations. This effect was not modified by ODQ, and 8-bromo-cGMP did not affect MMP-9 concentrations. While PMA increased phospho-NFκB p65 concentrations, SNAP had no influence on this effect. In conclusion, this study shows that NO donors may attenuate imbalanced MMP expression and activity in endothelial cells independent of cGMP- or NFκB-mediated mechanisms. Our results may offer an important pharmacological strategy to approach cardiovascular diseases.  相似文献   

13.
Regulation of the plasma membrane Ca2+ pump in the cell is of critical importance in maintaining calcium homeostasis. Since protein kinase C is known to regulate functions of cellular proteins by direct phosphorylation or by inducing their gene expression, we investigated the possible involvement of protein kinase C in the regulation of the plasma membrane Ca2+ pump. The Ca2+ pump was isolated by immunoprecipitation from [32P]orthophosphate-labeled cultured rat aortic endothelial cells grown in the absence or presence of phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. PMA treatment of cells led to a rapid increase in the phosphorylation level (1.3-fold) within 5 min and a further increase to 2.9-fold after 3 h. Prolonged PMA treatment also induced the accumulation of the Ca2+ pump mRNA, followed by increased levels of the pump protein. The peak level of the pump mRNA induction occurred at 4 h and was 8-20-fold higher than the control culture without PMA. The rate of the Ca2+ pump protein accumulation was slower, reaching a maximum of 3.5-fold after 6 h. Induction of the pump mRNA was suppressed by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and by down-regulation of protein kinase C. Inactive phorbol ester 4 alpha-phorbol didecanoate also failed to mimic the PMA effect. These results suggest that the induction of Ca2+ pump expression is mediated by a protein kinase C-dependent mechanism. Furthermore, since the induction of the Ca2+ pump mRNA was blocked when cycloheximide and PMA were added together, this suggests that newly synthesized protein factor is needed to produce the mRNA induction. Our results suggest that protein kinase C is involved in the regulation of the Ca2+ pump in endothelial cells. At the protein level, it modifies the Ca2+ pump by phosphorylation, and at the gene level, it stimulates the expression of its mRNA and thereby increases the amount of the pump protein.  相似文献   

14.
The KC gene is a cell cycle-dependent competence gene originally identified in platelet-derived growth factor-stimulated BALB/c-3T3 cells. This gene is also induced in murine peritoneal macrophages in response to activation stimuli. We have examined the expression of the KC gene in cultured porcine aortic endothelial cells following treatment with bacterial lipopolysaccharide (LPS) as a first step in defining the early molecular events involved in endothelial cell stimulation by physiologically relevant modulators. LPS markedly elevated the steady-state level of KC mRNA in confluent endothelial cells; maximum induction of KC occurred in the cells following exposure to 10 ng/ml LPS for 2 h. LPS did not increase the growth fraction of the cells, nor was the KC mRNA level changed in dense endothelial cells stimulated to enter the cell cycle with epidermal growth factor. However, KC mRNA expression was elevated by addition of serum to starved, subconfluent endothelial cell cultures. Treatment of endothelial cells with phorbol myristate acetate (PMA) and 1-oleoyl-2-acetyl-glycerol (OAG) also induced KC gene expression. A maximum response was obtained with 10 nM PMA, the effect decreasing with higher levels of the phorbol ester. The calcium ionophore A23187 exhibited little stimulatory activity alone; however, the ionophore did cause a doubling in the PMA-stimulated KC expression. The increased expression of KC induced by LPS and PMA was inhibited by the presence of 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H7), a protein kinase C inhibitor, but not by HA1004 (an H7 analogue with little protein kinase C inhibitory activity). No cytotoxicity was observed in inhibitor or LPS-treated endothelial cell cultures. These results demonstrate that KC gene expression is stimulated by LPS in vascular endothelial cells in a proliferation-independent process. Second, unlike LPS-induced KC expression in macrophages and platelet-derived growth factor-induced KC expression in 3T3 cells, LPS induction of KC in endothelial cells appears to require activation of protein kinase C.  相似文献   

15.
16.
We investigated the effect of agents which raise intracellular cyclic AMP (cAMP) and protein kinase C activators on the production of plasminogen activator inhibitor type-2 (PAI-2) by cultured human promyelocytic leukemia cell line, PL-21. As previously reported, PMA, a protein kinase C activator, showed a strong stimulating effect on the PAI-2 production. 1-oleoyl-2-acetyl-sn-glycerol (OAG), another synthetic protein kinase C activator, also showed a stimulating effect, which was, however, much less than that of PMA. The agents which raise intracellular cAMP, dibutyryl cAMP, 8-bromo cAMP, prostaglandin E1, and 3-isobutyl-1-methyl-xanthine, little increased the PAI-2 production when tested alone, but showed significant synergistic effects with PMA or OAG. The synergistic effect between PMA and dibutyryl cAMP was further verified by SDS-PAGE followed by immunoblotting using a monoclonal antibody against the PAI-2. It is interesting that the up-regulation of PAI-2 by cAMP and the synergistic effect with PKC activators forms a contrast to the previous reported bi-directional regulation of endothelial PAI-1 secretion by PKC activator and cAMP.  相似文献   

17.
18.
19.
OVCA 433 human ovarian carcinoma cells secrete both mammalian plasminogen activators (PAs) urokinase (UK) and tissue-type PA (tPA). Treatment of cells with 4 beta-phorbol-12-myristate-13-acetate (PMA), a stimulator of protein kinase C (PKC), leads to large increases in the secretion rates of both PA types. PA stimulation by PMA is time- and concentration-dependent, with maximal effects occurring between 12 and 24 h at PMA concentrations of 1-10 ng/ml. The PMA effect is mimicked by mezerein, another known PKC stimulator, but not by 4 alpha-phorbol or 4 alpha-phorbol-12,13-didecanoate, two phorbol compounds that do not stimulate PKC. PA activity is virtually unaffected by 1-oleoyl-2-acetylglycerol (OAG), a synthetic diacylglycerol that stimulates PKC in vitro but has variable effects on whole cells. PMA stimulation of PA activity is blocked by both actinomycin D and cycloheximide, indicating requirements for new RNA and protein synthesis. When analyzed individually, the relative PMA-induced increases in UK and tPA activities are identical. Increased UK activity is fully accounted for by increased UK antigen secretion, whereas increased tPA secretion accounts for only about one-half of the increased tPA activity. Similarly, PMA induces large increases in steady-state UK mRNA levels, while its effects on tPA mRNA levels are only modest. Thus, while increases in secretion rates and mRNA levels can completely account for UK stimulation, other mechanisms augmenting these processes must exist specifically for tPA. Since the relative increases in UK and tPA activities are identical despite the probable existence of multiple mechanisms contributing to tPA regulation, our data suggest the possibility of interrelationships between the two pathways such that equivalent degrees of UK and tPA activity stimulation are ultimately achieved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号