首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-mobility group box 1 (HMGB1) is a 30-kDa DNA-binding protein that displays proinflammatory cytokine-like properties. HMGB1-dependent inflammatory processes have been demonstrated in models of sterile injury, including ischemia-reperfusion injury and hemorrhagic shock. Here, we tested the hypothesis that the systemic inflammatory response and associated remote organ injury that occur after peripheral tissue injury are highly dependent on HMGB1. Toll-like receptor 4 (TLR4) wild-type (WT) mice subjected to bilateral femur fracture after treatment with neutralizing antibodies to HMGB1 had lower serum IL-6 and IL-10 levels compared with mice treated with nonimmune control IgG. Similarly, compared with injured mice treated with control IgG, anti-HMGB1 antibody-treated mice had lower serum alanine aminotransferase levels and decreased hepatic and gut mucosal NF-kappaB DNA binding. TLR4 mutant (C3H/HeJ) mice subjected to bilateral femur fracture had less systemic inflammation and liver injury than WT controls. Residual trauma-induced systemic inflammation and hepatocellular injury were not ameliorated by treatment with a polyclonal anti-HMGB1 antibody, even though HMGB1 levels were transiently elevated just 1 h after injury in both WT and C3H/HeJ mice. Collectively, these data demonstrate a critical role for a TLR4-HMGB1 pathway in the initiation of systemic inflammation and end-organ injury following isolated peripheral tissue injury.  相似文献   

2.
High-mobility group box 1 (HMGB1), a cytokine-like proinflammatory protein, is secreted by activated macrophages and released by necrotic cells. We hypothesized that immunostimulated enterocytes might be another source for this mediator. Accordingly, Caco-2 cells or primary mouse intestinal epithelial cells (IECs) were incubated with "cytomix" (a mixture of TNF, IL-1, and IFN-) for various periods. HMGB1 in cell culture supernatants was detected by Western blot analysis and visualized in Caco-2 cells with the use of fluorescence confocal and immunotransmission electron microscopy. Caco-2 cells growing on filters in diffusion chambers were stimulated with cytomix for 48 h in the absence or presence of anti-HMGB1 antibody, and permeability to fluorescein isothiocyanate-dextran (average molecular mass, 4 kDa; FD4) was assessed. Cytomix-stimulated Caco-2 cells secreted HMGB1 into the apical but not the basolateral compartments of diffusion chambers. Although undetectable at 6 and 12 h after the start of incubation with cytomix, HMGB1 was present in supernatants after 24 h of incubation. HMGB1 secretion by Caco-2 monolayers also was induced when the cells were exposed to FSL-1, a Toll-like receptor (Tlr)-2 agonist, or flagellin, a Tlr5 agonist, but not lipopolysaccharide, a Tlr4 agonist. Cytomix also induced HMGB1 secretion by primary IECs. Cytoplasmic HMGB1 is localized within vesicles in Caco-2 cells and is secreted, at least in part, associated with exosomes. Incubating Caco-2 cells with cytomix increased FD4 permeation, but this effect was significantly decreased in the presence of anti-HMGB1 antibody. Collectively, these data support the view that HMGB1 is secreted by immunostimulated enterocytes. This process may exacerbate inflammation-induced epithelial hyperpermeability via an autocrine feedback loop. exosome; toll-like receptor; flagellin  相似文献   

3.
High mobility group box 1 (HMGB1) is a novel late mediator of inflammatory responses that contributes to endotoxin-induced acute lung injury and sepsis-associated lethality. Although acute lung injury is a frequent complication of severe blood loss, the contribution of HMGB1 to organ system dysfunction in this setting has not been investigated. In this study, HMGB1 was detected in pulmonary endothelial cells and macrophages under baseline conditions. After hemorrhage, in addition to positively staining endothelial cells and macrophages, neutrophils expressing HMGB1 were present in the lungs. HMGB1 expression in the lung was found to be increased within 4 h of hemorrhage and then remained elevated for more than 72 h after blood loss. Neutrophils appeared to contribute to the increase in posthemorrhage pulmonary HMGB1 expression since no change in lung HMGB1 levels was found after hemorrhage in mice made neutropenic with cyclophosphamide. Plasma concentrations of HMGB1 also increased after hemorrhage. Blockade of HMGB1 by administration of anti-HMGB1 antibodies prevented hemorrhage-induced increases in nuclear translocation of NF-kappa B in the lungs and pulmonary levels of proinflammatory cytokines, including keratinocyte-derived chemokine, IL-6, and IL-1 beta. Similarly, both the accumulation of neutrophils in the lung as well as enhanced lung permeability were reduced when anti-HMGB1 antibodies were injected after hemorrhage. These results demonstrate that hemorrhage results in increased HMGB1 expression in the lungs, primarily through neutrophil sources, and that HMGB1 participates in hemorrhage-induced acute lung injury.  相似文献   

4.
High mobility group box protein 1 (HMGB1), a DNA binding nuclear and cytosolic protein, is a proinflammatory cytokine released by monocytes and macrophages. This study addressed the hypothesis that HMGB1 is an immunostimulatory signal that induces dendritic cell (DC) maturation. We show that HMGB1, via its B box domain, induced phenotypic maturation of DCs, as evidenced by increased CD83, CD54, CD80, CD40, CD58, and MHC class II expression and decreased CD206 expression. The B box caused increased secretion of the proinflammatory cytokines IL-12, IL-6, IL-1alpha, IL-8, TNF-alpha, and RANTES. B box up-regulated CD83 expression as well as IL-6 secretion via a p38 MAPK-dependent pathway. In the MLR, B box-activated DCs acted as potent stimulators of allogeneic T cells, and the magnitude of the response was equivalent to DCs activated by exposure to LPS, nonmethylated CpG oligonucleotides, or CD40L. Furthermore, B box induced secretion of IL-12 from DCs as well as IL-2 and IFN-gamma secretion from allogeneic T cells, suggesting a Th1 bias. HMGB1 released by necrotic cells may be a signal of tissue or cellular injury that, when sensed by DCs, induces and/or enhances an immune reaction.  相似文献   

5.
High mobility group box 1 (HMGB1) is an abundant and conserved nuclear protein that is released by necrotic cells and acts in the extracellular environment as a primary proinflammatory signal. In this study we show that human dendritic cells, which are specialized in Ag presentation to T cells, actively release their own HMGB1 into the extracellular milieu upon activation. This secreted HMGB1 is necessary for the up-regulation of CD80, CD83, and CD86 surface markers of human dendritic cells and for IL-12 production. The HMGB1 secreted by dendritic cells is also required for the clonal expansion, survival, and functional polarization of naive T cells. Using neutralizing Abs and receptor for advanced glycation end product-deficient (RAGE(-/-)) cells, we demonstrate that RAGE is required for the effect of HMGB1 on dendritic cells. HMGB1/RAGE interaction results in downstream activation of MAPKs and NF-kappaB. The use of an ancient signal of necrosis, HMGB1, by dendritic cells to sustain their own maturation and for activation of T lymphocytes represents a profitable evolutionary mechanism.  相似文献   

6.
HMGB1 is a highly conserved nuclear protein that is rapidly released into the extracellular environment during infection or tissue damage. In osteoarthritis, HMGB1 acts as a pro-inflammatory cytokine inducing a positive feedback loop for synovial inflammation and cartilage degradation. The aim of this study was to explore the role of HMGB1 in inflammation and catabolism of temporomandibular joint osteoarthritis (TMJOA) and whether inhibition of HMGB1 affects TMJOA. Human synovial fibroblasts were incubated with HMGB1, the expression of pro-inflammatory cytokines and catabolic mediators were measured by Western blot and ELISA. NF-κB signaling pathway involvement was studied by the NF-κB inhibitor and detected by Western blotting and immunofluorescence staining. TMJOA was induced by an injection of complete Freund’s adjuvant (CFA) into anterosuperior compartment of rat’s joint. An anti-HMGB1 antibody was used to assess the effect to HMGB1 in the synovium and cartilage of the CFA-induced TMJOA rats by hematoxylin and eosin, Safranin O, Masson trichrome staining, immunohistochemistry and immunofluorescence. HMGB1 markedly increased the production of MMP13, ADAMTS5, IL-1β and IL-6 through activating NF-κB signaling pathway in human synovial fibroblasts. In vivo, application of the HMGB1 neutralizing antibody effectively ameliorated the detrimental extent of TMJOA. Furthermore, the HMGB1 neutralizing antibody reduced the expression of NF-κB, pro-inflammatory cytokines and catabolic mediators in the synovium and cartilage of CFA-induced TMJOA rats. HMGB1 inhibition alleviates TMJOA by reducing synovial inflammation and cartilage catabolism possibly through suppressing the NF-κB signaling pathway and may become a therapeutic method against TMJOA.Key words: HMGB1 neutralizing antibody, temporomandibular joint osteoarthritis, inflammation, catabolism, NF-κB  相似文献   

7.
Intestinal barrier dysfunction occurs following hemorrhagic shock and resuscitation (HS/R). High-mobility group B1 (HMGB1) has been shown to increase the permeability of Caco-2 human enterocyte-like epithelial monolayers in vitro. In this study, we found that serum concentrations of HMGB1 were higher in blood samples obtained from 25 trauma victims with hemorrhagic shock than in 9 normal volunteers. We also studied whether treatment with anti-HMGB1 antibody can ameliorate HS/R-induced gut barrier dysfunction in mice. Animals were shocked by withdrawal of blood to maintain mean arterial pressure at 25 to 30 mmHg for 2 h. After resuscitation with shed blood plus Ringer's lactate solution, the mice were treated with either anti-HMGB1 antibody or nonimmune rabbit IgG. Serum HMGB1 concentrations were significantly higher in trauma victims than control mice. Treatment with anti-HMGB1 antibody improved survival at 24 h and ameliorated the development of ileal mucosal hyperpermeability to FITC-labeled dextran. At 24 h after HS/R, treatment with anti-HMGB1 antibody decreased bacterial translocation to mesenteric lymph nodes and was associated with lower circulating concentrations of IL-6 and IL-10. These data support the notion that HMGB1 is a mediator of HS/R-induced gut barrier dysfunction and suggest that anti-HMGB1 antibodies warrant further evaluation as a therapeutic to ameliorate the morbidity of HS/R in trauma patients.  相似文献   

8.
Plasmacytoid dendritic cells (PDC) are innate immune effector cells that are recruited to sites of chronic inflammation, where they modify the quality and nature of the adaptive immune response. PDCs modulate adaptive immunity in response to signals delivered within the local inflammatory milieu by pathogen- or damage-associated molecular pattern, molecules, and activated immune cells (including NK, T, and myeloid dendritic cells). High mobility group B1 (HMGB1) is a recently identified damage-associated molecular pattern that is released during necrotic cell death and also secreted from activated macrophages, NK cells, and mature myeloid dendritic cells. We have investigated the effect of HMGB1 on the function of PDCs. In this study, we demonstrate that HMGB1 suppresses PDC cytokine secretion and maturation in response to TLR9 agonists including the hypomethylated oligodeoxynucleotide CpG- and DNA-containing viruses. HMGB1-inhibited secretion of several proinflammatory cytokines including IFN-alpha, IL-6, TNF-alpha, inducible protein-10, and IL-12. In addition, HMGB1 prevented the CpG induced up-regulation of costimulatory molecules on the surface of PDC and potently suppressed their ability to drive generation of IFN-gamma-secreting T cells. Our observations suggest that HMGB1 may play a critical role in regulating the immune response during chronic inflammation and tissue damage through modulation of PDC function.  相似文献   

9.
10.

Introduction  

High Mobility Group Box 1 (HMGB1) is a nuclear non-histone protein. HMGB1, which is secreted by inflammatory cells and passively released from apoptotic and necrotic cells, may act as a pro-inflammatory mediator. As apoptotic cells accumulate in systemic lupus erythematosus (SLE), HMGB1 levels might be increased in SLE. HMGB1 may also serve as an autoantigen, leading to the production of anti-HMGB1 antibodies. In this study we determined levels of HMGB1 and anti-HMGB1 in SLE patients in comparison to healthy controls (HC) and analysed their relation with disease activity.  相似文献   

11.
Studies in recent years have identified a pivotal role of the cytokine IL-23 in the pathogenesis of inflammatory bowel diseases (IBD: Crohn´s disease, ulcerative colitis) and colitis-associated colon cancer. Genetic studies revealed that subgroups of IBD patients have single nucleotide polymorphisms in the IL-23R gene suggesting that IL-23R signaling affects disease susceptibility. Furthermore, increased production of IL-23 by macrophages, dendritic cells or granulocytes has been observed in various mouse models of colitis, colitis-associated cancer and IBD patients. Moreover, in several murine models of colitis, suppression of IL-12/IL-23 p40, IL-23 p19 or IL-23R function led to marked suppression of gut inflammation. This finding was associated with reduced activation of IL-23 target cells such as T helper 17 cells, innate lymphoid cells type 3, granulocytes and natural killer cells as well as with impaired production of proinflammatory cytokines. Based on these findings, targeting of IL-23 emerges as important concept for suppression of gut inflammation and inflammation-associated cancer growth. Consistently, neutralizing antibodies against IL-12/IL-23 p40 and IL-23 p19 have been successfully used in clinical trials for therapy of Crohn´s disease and pilot studies in ulcerative colitis are ongoing. These findings underline the crucial regulatory role of IL-23 in chronic intestinal inflammation and colitis-associated cancer and indicate that therapeutic strategies aiming at IL-23 blockade may be of key relevance for future therapy of IBD patients.  相似文献   

12.
High mobility group box chromosomal protein 1 (HMGB1) is a DNA-binding nuclear protein that can be released from dying cells and activated myeloid cells. Extracellularly, HMGB1 promotes inflammation. Experimental studies demonstrate HMGB1 to be a pathogenic factor in many inflammatory conditions including arthritis. HMGB1-blocking therapies in arthritis models alleviate disease and confer significant protection against cartilage and bone destruction. So far, the most successful HMGB1-targeted therapies have been demonstrated with HMGB1-specific polyclonal antibodies and with recombinant A box protein, a fragment of HMGB1. The present study is the first to evaluate the potential of a monoclonal anti-HMGB1 antibody (2G7, mouse IgG2b) to ameliorate arthritis. Effects of repeated injections of this antibody have now been studied in two conceptually different models of arthritis: collagen type II-induced arthritis (CIA) in DBA/1 mice and in a spontaneous arthritis disease in mice with combined deficiencies for genes encoding for the enzyme DNase type II and interferon type I receptors. These mice are unable to degrade phagocytozed DNA in macrophages and develop chronic, destructive polyarthritis. Therapeutic intervention in CIA and prophylactic administration of anti-HMGB1 monoclonal antibody (mAb) in the spontaneous arthritis model significantly ameliorated the clinical courses. Anti-HMGB1 mAb therapy also partially prevented joint destruction, as demonstrated by histological examination. The beneficial antiarthritic effects by the anti-HMGB1 mAb in two diverse models of arthritis represent additional proof-of-concept, indicating that HMGB1 may be a valid target molecule to consider for development of future clinical therapy.  相似文献   

13.
14.
15.
16.
High mobility group box 1 protein (HMGB1), originally characterized as a nuclear DNA-binding protein, has also been described to have an extracellular role when it is involved in cellular activation and proinflammatory responses. In this study, FLAG-tagged HMGB1 was inducibly expressed in the presence of culture media with or without added IL-1beta, IFN-gamma, or TNF-alpha. HMGB1 purified from cells grown in culture media alone only minimally increased cytokine production by MH-S macrophages and had no effect on murine neutrophils. In contrast, HMGB1 isolated from cells cultured in the presence of IL-1beta, IFN-gamma, and TNF-alpha had enhanced proinflammatory activity, resulting in increased production of MIP-2 and TNF-alpha by exposed cells. IL-1beta was bound to HMGB1 isolated from cells cultured with this cytokine, and purified HMGB1 incubated with recombinant IL-1beta acquired proinflammatory activity. Addition of anti-IL-1beta Abs or the IL-1 receptor antagonist to cell cultures blocked the proinflammatory activity of HMGB1 purified from IL-1beta-exposed cells, indicating that such activity was dependent on interaction with the IL-1 receptor. These results demonstrate that HMGB1 acquires proinflammatory activity through binding to proinflammatory mediators, such as IL-1beta.  相似文献   

17.
Mechanisms for macrophage-mediated HIV-1 induction   总被引:2,自引:0,他引:2  
Viral latency is a long-term pathogenic condition in patients infected with HIV-1. Low but sustained virus replication in chronically infected cells can be activated by stimulation with proinflammatory cytokines such as TNF-alpha, IL-1 beta, or other host factors. However, the precise mechanism by which cellular activation induces latently infected cells to produce virions has remained unclear. In the present report, we present evidence that activation of HIV-1 replication in latently infected U1 or ACH2 cells by human macrophages is mediated by a rapid nuclear localization of NF-kappaB p50/p65 dimer with concomitant increased expression of proinflammatory cytokines. Multiplexed RT-PCR amplification of mRNA isolated from cocultures of macrophages and U1 and ACH2 cells showed significant induction of IL-1beta, IL-6, IL-8, TNF-alpha, and TGF-beta expression within 3 h of coincubation. Fixation of macrophages, U-1, or ACH2 cells with paraformaldehyde before coculture completely abrogated the induction of NF-kappaB subunits and HIV-1 replication, suggesting that cooperative interaction between the two cell types is an essential process for cellular activation. Pretreatment of macrophage-U1 or macrophage-ACH2 cocultures with neutralizing anti-TNF-alpha Ab down-regulated the replication of HIV-1. In addition, pretreatment of macrophage-U1 or macrophage-ACH2 cocultures with the NF-kappaB inhibitor (E)3-[(4-methylphenyl)sulfonyl]-2-propenenitrile (BAY 11-7082) prevented the induction of cytokine expression, indicating a pivotal role of NF-kappaB-mediated signaling in the reactivation of HIV-1 in latently infected cells by macrophages. These results provide a mechanism by which macrophages induce HIV-1 replication in latently infected cells.  相似文献   

18.
19.
20.
Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT-PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1beta, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1beta induced the release of PGE2, IL-6 and activated NF-kappaB, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1beta also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1beta in the medium of LPS-treated microglia and exacerbated the IL-1beta-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1beta actions by binding excess levels of this cytokine during brain inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号