首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The assembly of RNA polymerase was studied in Escherichia coli mutants encoding large N-terminal amber fragments of the subunit. Whereas the removal of up to 20% of the carboxy-terminus does not prevent the formation of premature core enzyme, the amber fragments seem to interfere with holoenzyme production. These studies permit, therefore, the localization of a region on the polypeptide involved in sigma binding.Paper VIII is Glass et al. (1986a)  相似文献   

3.
4.
Summary The and subunit of RNA polymerase are thought to be controlled by a translational feedback mechanism regulated by the concentration of RNA polymerase holoenzyme. To study this regulation in vivo, an inducible RNA polymerase overproduction system was developed. This system utilizes plasmids from two incompatibility groups that carry RNA polymerase subunit genes under lac promoter/operator control. When the structural genes encoding the components of core RNA polymerase (, and ) or holoenzyme (, , and 70) are present on the plasmids, induction of the lac promoter results in a two fold increase in the concentration of functional RNA polymerase. The induction of RNA polymerase overproduction is characterized by an initial large burst of synthesis followed by a gradual decrease as the concentration of RNA polymerase increases. Overproduction of RNA polymerase in a strain carrying an electrophoretic mobility mutation in the rpoB gene results in the specific repression of synthesis off the chromosome. These results indicate that RNA polymerase feedback regulation controls synthesis in vivo.  相似文献   

5.
Summary Antibodies were raised against a synthetic tetradecameric peptide with an amino acid sequence, DLIQEGNIGLMKAV, which corresponds to the most highly conserved region of bacterial RNA polymerase factors. In a Western-blot analysis of total Escherichia coli proteins, the antiserum reacted specifically with at least three proteins with apparent molecular weights of 75 kDa, 27 kDa and 23 kDa, in addition to the known factors (70 and 32). The majorities of 70 and 32 were recovered as associated forms with the RNA polymerase on glycerol gradient centrifugation, while the other cross-reacting proteins were not. Unambiguous evidence was obtained which indicated that the intracellular level of 32 increased rapidly upon heatshock, at least in the strain containing high copy numbers of the rpoH gene.  相似文献   

6.
7.
8.
9.
10.
A 302 bp DNA fragment and a 113 bp subfragment of the former, both containing the fd gene VIII promoter (P VIII), were found to exhibit temperature-dependent differential behaviour in RNA chain initiation from P VIII. At 37°C no significant differences were observed, while at 17°C chain initiation was strongly suppressed only with the 113 bp fragment. This phenomenon depended on the presence of the (blunt) DNA terminus upstream from P VIII (position −70). Footprinting revealed that at 17°C RNA polymerase was bound to this DNA fragment in a different mode. Contacts were observed only upstream from position −25. On the contrary, at 37°C only the promoter complex footprint was visible. These results indicate that at 17°C formation of the non-initiating complex is more favourable than formation of the promoter complex (which is closed at 17°C; Hofer, B., Müller, D. and Köster, H. (1985) Nucleic Acids Res. 13, 5995–6013) and that formation of both complexes is mutually exclusive. No footprints of RNA polymerase were observed at other DNA termini. This indicates a sequence-specificity for the interaction at the terminus of the 113 bp fragment. The footprint pattern, together with features of the DNA sequence, suggests that the contacts involved in this interaction are similar to those promoter contacts formed upstream from position −20 and that DNA without a −10 region can be specifically recognized by RNA polymerase.  相似文献   

11.
12.
13.
14.
15.
Multidrug resistance is a major cause of clinical failure in treating bacterial infections. Increasing evidence suggests that bacteria can resist multiple antibiotics through intrinsic mechanisms that rely on gene products such as efflux pumps that expel antibiotics and special membrane proteins that block the penetration of drug molecules. In this study, Escherichia coli was used as a model system to explore the genetic basis of intrinsic multidrug resistance. A random mutant library was constructed in E. coli EC100 using transposon mutagenesis. The library was screened by growth measurement to identify the mutants with enhanced or reduced resistance to chloramphenicol (Cm). Out of the 4,000 mutants screened, six mutants were found to be more sensitive to Cm and seven were more resistant compared to the wild-type EC100. Mutations in 12 out of the 13 mutants were identified by inverse polymerase chain reaction. Mutants of the genes rob, garP, bipA, insK, and yhhX were more sensitive to Cm compared to the wild-type EC100, while the mutation of rhaB, yejM, dsdX, nagA, yccE, atpF, or htrB led to higher resistance. Overexpression of rob was found to increase the resistance of E. coli biofilms to tobramycin (Tob) by 2.7-fold, while overexpression of nagA, rhaB, and yccE significantly enhanced the susceptibility of biofilms by 2.2-, 2.5-, and 2.1-fold respectively.  相似文献   

16.
Summary The DNA polymerase III holoenzyme is a complex, multisubunit enzyme that is responsible for the synthesis of most of the Escherichia coli chromosome. Through studies of the structure, function and regulation of this enzyme over the past decade, considerable progress has been made in the understanding of the features of a true replicative complex. The holoenzyme contains at least seven different subunits. Three of these, , and , compose the catalytic core. Apparently is the catalytic subunit and the product of the dnaE gene. Epsilon, encoded by dnaQ (mutD), is responsible for the proofreading 35 activity of the polymerase. The function of the B subunit remains to be established. The auxiliary subunits, , and , encoded by dnaN, dnaZ and dnaX, respectively, are required for the functioning of the polymerase on natural chromosomes. All of the proteins participate in increasing the processivity of the polymerase and in the ATP-dependent formation of an initiation complex. Tau causes the polymerase to dimerize, perhaps forming a structure that can coordinate leading and lagging strand synthesis at the replication fork. This dimeric complex may be asymmetric with properties consistent with the distinct requirements for leading and lagging strand synthesis.  相似文献   

17.
Summary A set of plasmids containing 42, 21 and 13 bp direct repeats was used to analyze the effect of repeat length on the frequencies of deletion formation and the structure of the deleted derivatives of different recombination-deficient Escherichia coli strains. Agarose gel electrophoresis of plasmid DNA demonstrated that the formation of deletions in these plasmids was associated with dimerization of plasmid DNA. Restriction analysis of the dimers showed that deletions at short direct repeats arose non-conservatively, that is, the formation of a deletion in one monomeric plasmid unit was not associated with a duplication in the other. Mutations in the recA, recF, recJ and recO genes had no marked effect on either the frequencies of deletion formation or the structure of dimers. In contrast, recB recC mutations greatly increased the frequencies of deletion formation, 6-fold for 42 bp, and 115-fold for 21 by direct repeats. Conversion of DNA replication to the rolling circle mode in a recB recC strain, resulting in the formation of double-stranded ends, is suggested as the stimulatory effector.  相似文献   

18.
In the application of engineered Escherichia coli in industrial polyhydroxybutyrate production process, one of the major concerns is the induction of the metabolic pathway. In this study, we developed a stress-induced system by which the PHB biosynthesis pathways can be induced under stress conditions. Fermentation results showed that recombinant E. coli DH5α (pQKZ103) harboring this system was able to accumulate polyhydroxybutyrate up to 85.8% of cell dry weight in minimal glucose medium without adding any inducer. Growth experiment with GFP as a reporter indicated that the induction of this system happened at the late exponential phase and was sensitive to stressed environment. This system can also be applied in many other biotechnological processes.  相似文献   

19.
20.
The mutagenic potentials of DNAs containing site- and stereospecific intrastrand DNA crosslinks were evaluated in Escherichia coli cells that contained a full complement of DNA polymerases or were deficient in either polymerases II, IV, or V. Crosslinks were made between adjacent N(6)-N(6) adenines and consisted of R,R- and S,S-butadiene crosslinks and unfunctionalized 2-, 3-, and 4-carbon tethers. Although replication of single-stranded DNAs containing the unfunctionalized 3- and 4-carbon tethers were non-mutagenic in all strains tested, replication past all the other intrastrand crosslinks was mutagenic in all E. coli strains, except the one deficient in polymerase II in which no mutations were ever detected. However, when mutagenesis was analyzed in cells induced for SOS, mutations were not detected, suggesting a possible change in the overall fidelity of polymerase II under SOS conditions. These data suggest that DNA polymerase II is responsible for the in vivo mutagenic bypass of these lesions in wild-type E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号