首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We have previously described two isogenic molecularly cloned simian immunodeficiency virus/human immunodeficiency virus chimeric viruses (SHIVs) that differ from one another by 9 amino acids and direct distinct clinical outcomes in inoculated rhesus monkeys. SHIV(DH12R-Clone 7), like other highly pathogenic CXCR4-tropic SHIVs, induces rapid and complete depletions of CD4+ T lymphocytes and immunodeficiency in infected animals. In contrast, macaques inoculated with SHIV(DH12R-Clone 8) experience only partial and transient losses of CD4+ T cells, show prompt control of their viremia, and remain healthy for periods of time extending for up to 4 years. The contributions of CD8+ and CD20+ lymphocytes in suppressing the replication of the attenuated SHIV(DH12R-Clone 8) and maintaining a prolonged asymptomatic clinical course was assessed by treating animals with monoclonal antibodies that deplete each lymphocyte subset at the time of virus inoculation. The absence of either CD8+ or CD20+ cells during the SHIV(DH12R-Clone 8) acute infection resulted in the rapid, complete, and irreversible loss of CD4+ T cells; sustained high levels of postpeak plasma viremia; and symptomatic disease in Mamu-A*01-negative Indian rhesus monkeys. In Mamu-A*01-positive animals, however, the aggressive, highly pathogenic phenotype was observed only in macaques depleted of CD8+ cells; SHIV(DH12R-Clone 8) was effectively controlled in Mamu-A*01-positive monkeys in the absence of B lymphocytes. Taken together, these results indicate that both CD8+ and CD20+ B cells contribute to the control of primate lentiviral infection in Mamu-A*01-negative macaques. Furthermore, the major histocompatibility complex genotype of an infected animal, as exemplified by the Mamu-A*01 allele in this study, has the additional capacity to shift the balance of the composite immune response.  相似文献   

2.
One of three full-length infectious molecular clones of SHIV(DH12R), designated SHIV(DH12R-CL-7) and obtained from productively infected rhesus monkey peripheral blood mononuclear cells, directed rapid and irreversible loss of CD4+ T cells within 3 weeks of its inoculation into Indian rhesus monkeys. Induction of complete CD4+ T-cell depletion by SHIV(DH12R-CL-7) was found to be dependent on inoculum size. The acquisition of this pathogenic phenotype was accompanied by the introduction of 42 amino acid substitutions into multiple genes of parental nonpathogenic SHIV(DH12). Transfer of the entire SHIV(DH12R-CL-7) env gene into the genetic background of nonpathogenic SHIV(DH12) failed to confer the rapid CD4+ T-lymphocyte-depleting syndrome; similarly, the substitution of gag plus pol sequences from SIV(smE543) for analogous SIV(mac239) genes in SHIV(DH12R-CL-7) attenuated the pathogenic phenotype. Amino acid changes affecting multiple viral genes are necessary, but insufficient by themselves, to confer the prototypically rapid and irreversible CD4+ T-cell-depleting phenotype exhibited by molecularly cloned SHIV(DH12R-CL-7).  相似文献   

3.
In contrast to simian immunodeficiency viruses (SIVs), which induce immunodeficiency over a 1- to 2-year period, highly pathogenic simian-human immunodeficiency viruses (SHIVs) cause an irreversible and systemic depletion of CD4(+) T lymphocytes in macaque monkeys within weeks of inoculation. Nonetheless, the seemingly more aggressive SHIVs have proven to be easier to control by the same vaccine regimens which fail to contain SIV. Because early events during in vivo infections may determine both the pathogenic consequences of the challenge virus and its sensitivity to interventions that prevent disease, we have evaluated the effects of inoculum size and a potent antiretroviral drug on the development of disease in monkeys infected with SHIV(DH12R). The results obtained show that in a majority of inoculated animals, suppression of SHIV replication during the first 2 weeks of infection, which prevents complete loss of CD4(+) T cells, leads to very low to undetectable postpeak viremia and an asymptomatic clinical course for periods up to 4 years.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) Vpu enhances the release of viral particles from infected cells by targeting BST-2/tetherin, a cellular protein inhibiting virus release. The widely used HIV-1(NL4-3) Vpu functionally inactivates human BST-2 but not murine or monkey BST-2, leading to the notion that Vpu antagonism is species specific. Here we investigated the properties of the CXCR4-tropic simian-human immunodeficiency virus DH12 (SHIV(DH12)) and the CCR5-tropic SHIV(AD8), each of which carries vpu genes derived from different primary HIV-1 isolates. We found that virion release from infected rhesus peripheral blood mononuclear cells was enhanced to various degrees by the Vpu present in both SHIVs. Transfer of the SHIV(DH12) Vpu transmembrane domain to the HIV-1(NL4-3) Vpu conferred antagonizing activity against macaque BST-2. Inactivation of the SHIV(DH12) and SHIV(AD8) vpu genes impaired virus replication in 6 of 8 inoculated rhesus macaques, resulting in lower plasma viral RNA loads, slower losses of CD4(+) T cells, and delayed disease progression. The expanded host range of the SHIV(DH12) Vpu was not due to adaptation during passage in macaques but was an intrinsic property of the parental HIV-1(DH12) Vpu protein. These results demonstrate that the species-specific inhibition of BST-2 by HIV-1(NL4-3) Vpu is not characteristic of all HIV-1 Vpu proteins; some HIV-1 isolates encode a Vpu with a broader host range.  相似文献   

5.
Chen Z  Huang Y  Zhao X  Skulsky E  Lin D  Ip J  Gettie A  Ho DD 《Journal of virology》2000,74(14):6501-6510
The increasing prevalence of human immunodeficiency virus type 1 (HIV-1) subtype C infection worldwide calls for efforts to develop a relevant animal model for evaluating strategies against the transmission of the virus. A chimeric simian/human immunodeficiency virus (SHIV), SHIV(CHN19), was generated with a primary, non-syncytium-inducing HIV-1 subtype C envelope from a Chinese strain in the background of SHIV(33). Unlike R5-tropic SHIV(162), SHIV(CHN19) was not found to replicate in rhesus CD4(+) T lymphocytes. SHIV(CHN19) does, however, replicate in CD4(+) T lymphocytes of pig-tailed macaques (Macaca nemestrina). The observed replication competence of SHIV(CHN19) requires the full tat/rev genes and partial gp41 region derived from SHIV(33). To evaluate in vivo infectivity, SHIV(CHN19) was intravenously inoculated, at first, into two pig-tailed and two rhesus macaques. Although all four animals became infected, the virus replicated preferentially in pig-tailed macaques with an earlier plasma viral peak and a faster seroconversion. To determine whether in vivo adaptation would enhance the infectivity of SHIV(CHN19), passages were carried out serially in three groups of two pig-tailed macaques each, via intravenous blood-bone marrow transfusion. The passages greatly enhanced the infectivity of the virus as shown by the increasingly elevated viral loads during acute infection in animals with each passage. Moreover, the doubling time of plasma virus during acute infection became much shorter in passage 4 (P4) animals (0.2 day) in comparison to P1 animals (1 to 2 days). P2 to P4 animals all became seropositive around 2 to 3 weeks postinoculation and had a decline in CD4/CD8 T-cell ratio during the early phase of infection. In P4 animals, a profound depletion of CD4 T cells in the lamina propria of the jejunum was observed. Persistent plasma viremia has been found in most of the infected animals with sustained viral loads ranging from 10(3) to 10(5) per ml up to 6 months postinfection. Serial passages did not change the viral phenotype as confirmed by the persistence of the R5 tropism of SHIV(CHN19) isolated from P4 animals. In addition, the infectivity of SHIV(CHN19) in rhesus peripheral blood mononuclear cells was also increased after in vivo passages. Our data indicate that SHIV(CHN19) has adapted well to grow in macaque cells. This established R5-tropic SHIV(CHN19)/macaque model would be very useful for HIV-1 subtype C vaccine and pathogenesis studies.  相似文献   

6.
Host-virus interactions control disease progression in human immunodeficiency virus-infected human beings and in nonhuman primates infected with simian or simian/human immunodeficiency viruses (SHIV). These interactions evolve rapidly during acute infection and are key to the mechanisms of viral persistence and AIDS. SHIV(89.6PD) infection in rhesus macaques can deplete CD4(+) T cells from the peripheral blood, spleen, and lymph nodes within 2 weeks after exposure and is a model for virulent, acute infection. Lymphocytes isolated from blood and tissues during the interval of acute SHIV(89.6PD) infection have lost the capacity to proliferate in response to phytohemagglutinin (PHA). T-cell unresponsiveness to mitogen occurred within 1 week after mucosal inoculation yet prior to massive CD4(+) T-cell depletion and extensive virus dissemination. The lack of mitogen response was due to apoptosis in vitro, and increased activation marker expression on circulating T cells in vivo coincided with the appearance of PHA-induced apoptosis in vitro. Inappropriately high immune stimulation associated with rapid loss of mature CD4(+) T cells suggested that activation-induced cell death is a mechanism for helper T-cell depletion in the brief period before widespread virus dissemination. Elevated levels of lymphocyte activation likely enhance SHIV(89.6PD) replication, thus increasing the loss of CD4(+) T cells and diminishing the levels of virus-specific immunity that remain after acute infection. The level of surviving immunity may dictate the capacity to control virus replication and disease progression. We describe this level of immune competence as the host set point to show its pivotal role in AIDS pathogenesis.  相似文献   

7.
目的体外制备SHIV1157ipd3N4病毒中国恒河猴细胞适应株,在细胞水平和中国恒河猴体内评价其生物学特性。方法用SHIV1157ipd3N4病毒阴道感染中国恒河猴,在血浆病毒载量高峰期采血分离外周血单核淋巴细胞(PBMCs),与正常中国恒河猴PBMCs共培养。定期测定培养液中的P24抗原水平。当病毒复制达高峰期时收集培养上清,分装并冻存。测定病毒RNA载量、P24抗原浓度和TCID50。静脉感染中国恒河猴,研究该批次SHIV1157ipd3N4在体内的病毒学、免疫学指标变化及变异情况,分析其基本的生物学特性。结果本研究共制备了243 mL SHIV1157ipd3N4病毒原液,gp120序列分析表明病毒未发生变异,CCR5的嗜性也未发生改变。病毒载量为1.586×108 copies/mL,P24抗原水平为1.16×103 pg/mL,TZM-bl细胞测定病毒的TCID50为3.16×103/mL。1 mL SHIV1157ipd3N4静脉成功感染中国恒河猴G1004V,高峰期病毒载量达到1.0×106 copies/mL以上。结论此次制备的SHIV1157ipd3N4细胞适应株生物学特性稳定,适合作为毒种库构建SHIV1157ipd3N4/中国恒河猴模型。  相似文献   

8.
We used experimental infection of rhesus macaques with envelope gp120 V3 loop isogenic simian-human immunodeficiency virus (SHIV) molecular clones to more clearly define the impact of human immunodeficiency virus type 1 coreceptor usage in target cell selectivity and the rates of CD4+-T-cell depletion. Functional assays demonstrate that substitution of the V3 loop of the pathogenic CXCR4-tropic (X4) SHIV(SF33A2) molecular clone with the corresponding sequences from the CCR5-tropic (R5) SHIV(SF162P3) isolate resulted in a switch of coreceptor usage from CXCR4 to CCR5. The resultant R5 clone, designated SHIV(SF33A2(V3)), is replication competent in vivo, infecting two of two macaques by intravenous inoculation with peak viremia that is comparable to that seen in monkeys infected with X4-SHIV(SF33A2). But while primary infection with the X4 clone was accompanied by rapid and significant loss of peripheral and secondary lymphoid CD4+ T lymphocytes, infection with R5-SHIV(SF33A2(V3)) led to only a modest and transient loss. However, substantial depletion of intestinal CD4+ T cells was observed in R5-SHIV(SF33A2(V3))-infected macaques. Moreover, na?ve T cells that expressed high levels of CXCR4 were rapidly depleted in X4-SHIV(SF33A2)-infected macaques, whereas R5-SHIV(SF33A2(V3)) infection mainly affected memory T cells that expressed CCR5. These findings in a unique isogenic system illustrate that coreceptor usage is the principal determinant of tissue and target cell specificity of the virus in vivo and dictates the dynamics of CD4+-T-cell depletion during SHIV infection.  相似文献   

9.
Previous studies have shown that vaccination and boosting of rhesus macaques with attenuated vesicular stomatitis virus (VSV) vectors encoding Env and Gag proteins of simian immunodeficiency virus-human immunodeficiency virus (SHIV) hybrid viruses protect rhesus macaques from AIDS after challenge with the highly pathogenic SHIV 89.6P (23). In the present study, we compared the effectiveness of a single prime-boost protocol consisting of VSV vectors expressing SHIV Env, Gag, and Pol proteins to that of a protocol consisting of a VSV vector prime followed with a single boost with modified vaccinia virus Ankara (MVA) expressing the same SHIV proteins. After challenge with SHIV 89.6P, MVA-boosted animals controlled peak challenge viral loads to less than 2 x 10(6) copies/ml (a level significantly lower than that seen with VSV-boosted animals and lower than those reported for other vaccine studies employing the same challenge). MVA-boosted animals have shown excellent preservation of CD4(+) T cells, while two of four VSV-boosted animals have shown significant loss of CD4(+) T cells. The improved protection in MVA-boosted animals correlates with trends toward stronger prechallenge CD8(+)-T-cell responses to SHIV antigens and stronger postchallenge SHIV-neutralizing antibody production.  相似文献   

10.
Unlike prototypical lentiviruses like visna and caprine arthritis-encephalitis viruses, which are mainly macrophage tropic (M-tropic), primate lentiviruses primarily target CD4+ T lymphocytes. We previously reported that during the late phase of highly pathogenic chimeric simian/human immunodeficiency virus (SHIV) infections of rhesus macaques, when CD4+ T cells have been systemically eliminated, high levels of viremia are maintained from productively infected macrophages. The availability of several different M-tropic SHIVs from such late-stage immunocompromised animals provided the opportunity to assess whether they might contribute to the immune deficiency induced by their T-cell-tropic parental viruses or possibly cause a distinct disease based on their capacity to infect macrophages. Pairs of rhesus monkeys were therefore inoculated intravenously with six different M-tropic SHIV preparations, and their plasma viral RNA loads, circulating lymphocyte subset numbers, and eventual disease outcomes were monitored. Only one of these six M-tropic SHIVs induced any disease; the disease phenotype observed was the typical rapid, complete, and irreversible depletion of CD4+ T cells induced by pathogenic SHIVs. An analysis of two asymptomatic monkeys, previously inoculated with an M-tropic SHIV recovered directly from alveolar macrophages, revealed that this inoculum targeted alveolar macrophages in vivo, compared to a T-cell-tropic virus, yet no clinical disease occurred. Although one isolate did, in fact, induce the prototypical rapid, irreversible, and complete loss of CD4+ T cells, indicating that M-tropism and pathogenicity may not be inversely related, the majority of M-tropic SHIVs induced no clinical disease in immunocompetent macaques.  相似文献   

11.
The ability to monitor vaccine-elicited CD8(+) cytotoxic T-lymphocyte (CTL) responses in simian immunodeficiency virus (SIV)- and simian-human immunodeficiency virus (SHIV)-infected rhesus monkeys has been limited by our knowledge of viral epitopes predictably presented to those lymphocytes by common rhesus monkey MHC class I alleles. We now define an SIV and SHIV Nef CTL epitope (YTSGPGIRY) that is presented to CD8(+) T lymphocytes by the common rhesus monkey MHC class I molecule Mamu-A*02. All seven infected Mamu-A*02(+) monkeys evaluated demonstrated this response, and peptide-stimulated interferon gamma Elispot assays indicated that the response represents a large proportion of the entire CD8(+) T-lymphocyte SIV- or SHIV-specific immune response of these animals. Knowledge of this epitope and MHC class I allele substantially increases the number of available rhesus monkeys that can be used for testing prototype HIV vaccines in this important animal model.  相似文献   

12.
After the nearly complete and irreversible depletion of CD4(+) T lymphocytes induced by highly pathogenic simian/human immunodeficiency virus chimeric viruses (SHIVs) during infections of rhesus monkeys, tissue macrophages are able to sustain high levels (>10(6) viral RNA copies/ml) of plasma viremia for several months. We recently reported that the virus present in the plasma during the late macrophage phase of infection had acquired changes that specifically targeted the V2 region of gp120 (H. Imamichi et al., Proc. Natl. Acad. Sci. USA 99:13813-13818, 2002); some of these SHIV variants were macrophage-tropic (M-tropic). Those findings have been extended by examining the tropic properties, coreceptor usage, and gp120 structure of five independent SHIVs recovered directly from lymph nodes of late-stage animals. All of these tissue-derived SHIV isolates were able to infect alveolar macrophages. These M-tropic SHIVs used CXCR4, not CCR5, for infections of rhesus monkey PBMC and primary alveolar macrophages. Because the starting highly pathogenic T-tropic SHIV inoculum also utilized CXCR4, these results indicate that the acquisition of M-tropism in the SHIV-macaque system is not accompanied by a change in coreceptor usage. Compared to the initial T-tropic SHIV inoculum, tissue-derived M-tropic SHIVs from individual infected animals carry gp120s containing similar changes (specific amino acid deletions, substitutions, and loss of N-linked glycosylation sites), primarily within the V1 and/or V2 regions of gp120.  相似文献   

13.
In the present research,two Chinese rhesus monkeys were inoculated intravenously with 5000 TCID50 of SIVmac239. The changes in the numbers of CD4 T lymphocyte in peripheral blood,plasma viral loads,proviral DNA and humoral antibodies against virus were periodically monitored during 121 days. At the early stage of infection,proviral DNA had been detected in PBMCs,and infectious SIVmac239 virus had been isolated from PBMCs. At the same period,the numbers of CD4 T lymphocytes were significantly decreased,and maintained at low level during the 121-day period of infection. Plasma viral loads reached the peak at week 2 post-inoculation and kept at a steady state subsequently. Moreover,antibodies against viral proteins were detected from plasma. All the results showed that the two Chinese rhesus monkeys had been infected with SIVmac239 successfully. This animal model can be applied for further AIDS researches.  相似文献   

14.
目的模拟HIV性传播感染特点进行中国恒河猴阴道黏膜小剂量多次感染研究,为我国艾滋病疫苗有效性评价提供新的模型构建思路。方法选用20-30TCID50剂量的SHIVSF162p3病毒阴道黏膜途径感染六只成年雌性中国恒河猴,共感染13次,每次攻毒间隔4~7 d。采取测定血浆病毒载量和外周血CD4+∶CD8+。结果 6只中国恒河猴经13次病毒攻击后,经检测均建立系统性感染,血浆病毒载量呈阳性;CD4+∶CD8+均有下降。结论成功建立了中国恒河猴阴道黏膜小剂量多次感染模型,为艾滋病研究提供了新的更接近于自然感染状态的模型建立模式。  相似文献   

15.
Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.  相似文献   

16.
A tetrameric recombinant major histocompatibility complex (MHC) class II-peptide complex was used to quantitate human immunodeficiency virus type 1 (HIV-1) envelope (Env)-specific CD4(+) T cells in vaccinated and in simian/human immunodeficiency virus (SHIV)-infected rhesus monkeys. A rhesus monkey MHC class II DR molecule, Mamu-DR*W201, and an HIV-1 Env peptide (p46) were employed to construct this tetrameric complex. A p46-specific proliferative response was seen in sorted, tetramer-binding, but not nonbinding, CD4(+) T cells, directly demonstrating that this response was mediated by the epitope-specific lymphocytes. Although staining of whole blood from 10 SHIV-infected Mamu-DR*W201(+) rhesus monkeys failed to demonstrate tetramer-binding CD4(+) T cells (<0.02%), p46-stimulated peripheral blood mononuclear cells (PBMCs) from 9 of these 10 monkeys had detectable p46 tetramer-binding cells, comprising 0.5 to 15.2% of the CD4(+) T cells. p46-stimulated PBMCs from 7 of 10 Mamu-DR*W201(+) monkeys vaccinated with a recombinant canarypox virus-HIV-1 env construct also demonstrated p46 tetramer-binding cells, comprising 0.9 to 7.2% of the CD4(+) T cells. Thus, Env p46-specific CD4(+) T cells can be detected by tetrameric Mamu-DR*W201-p46 complex staining of PBMCs in both SHIV-infected and vaccinated rhesus monkeys. These epitope-specific cell populations appear to be present in peripheral blood at a very low frequency.  相似文献   

17.
We intrarectally infected newborn macaques with a pathogenic simian/human immunodeficiency virus (SHIV) that induced rapid and profound CD4 (+) T cell depletion, and examined the early effects of this SHIV on the thymus. After intrarectal infection, viral loads were much higher in the thymus than in other lymphoid tissues in newborns. In contrast, no clear difference was seen in the viral loads of different tissues in adults. Histological and immunohistochemical observations showed severe thymic involution. Depletion of CD4 (+) thymocytes began in the medulla at 2 weeks post infection and spread over the whole thymus. After in vivo infection, the CD2 (+) subpopulation, which represents a relatively later stage of T cell progenitors, was selectively reduced and development of thymocytes from CD3 (-) CD4 (-) CD8 (-) cells to CD4 (+) CD8 (+) cells was impaired. These results suggest that profound and irreversible loss of CD4 (+) cells that are observed in the peripheral blood of SHIV-infected monkeys are due to destruction of the thymus and impaired thymopoiesis as a result of SHIV infection in the thymus.  相似文献   

18.
We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4(+)-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4(+) T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) clade C causes >50% of all HIV infections worldwide, and an estimated 90% of all transmissions occur mucosally with R5 strains. A pathogenic R5 simian-human immunodeficiency virus (SHIV) encoding HIV clade C env is highly desirable to evaluate candidate AIDS vaccines in nonhuman primates. To this end, we generated SHIV-1157i, a molecular clone from a Zambian infant isolate that carries HIV clade C env. SHIV-1157i was adapted by serial passage in five monkeys, three of which developed peripheral CD4(+) T-cell depletion. After the first inoculated monkey developed AIDS at week 137 postinoculation, transfer of its infected blood to a na?ve animal induced memory T-cell depletion and thrombocytopenia within 3 months in the recipient. In parallel, genomic DNA from the blood donor was amplified to generate the late proviral clone SHIV-1157ipd3. To increase the replicative capacity of SHIV-1157ipd3, an extra NF-kappaB binding site was engineered into its 3' long terminal repeat, giving rise to SHIV-1157ipd3N4. This virus was exclusively R5 tropic and replicated more potently in rhesus peripheral blood mononuclear cells than SHIV-1157ipd3 in the presence of tumor necrosis factor alpha. Rhesus macaques of Indian and Chinese origin were next inoculated intrarectally with SHIV-1157ipd3N4; this virus replicated vigorously in both sets of monkeys. We conclude that SHIV-1157ipd3N4 is a highly replication-competent, mucosally transmissible R5 SHIV that represents a valuable tool to test candidate AIDS vaccines targeting HIV-1 clade C Env.  相似文献   

20.
In vivo adaptation of simian-human immunodeficiency virus (SHIV) clone SHIV(SF33) resulted in the emergence of pathogenic isolate SHIV(SF33A), which caused a rapid and severe CD4(+) T-cell depletion when inoculated into rhesus macaques. Two molecular clones generated by inserting the env V1-to-V5 region amplified from SHIV(SF33A)-infected animals into the parental SHIV(SF33) genome retained a pathogenic phenotype. The gp120 envelope glycoproteins of pathogenic clones SHIV(SF33A2) and SHIV(SF33A5) conferred a threefold increase in viral entry and fusogenicity compared to the parental glycoprotein. Changes in gp120 were also responsible for a higher replication capacity and cytopathicity in primary CD4(+) T-cell cultures. Last, gp120 carried the determinants of SHIV(SF33A) neutralization resistance. Thus, changes in SHIV(SF33A) gp120 produced a set of properties that could account for the pathogenic phenotype observed in vivo. Measurement of antibody binding to SHIV(SF33A) viral particles revealed an increased exposure of the CD4-induced epitope recognized by the 17b monoclonal antibody in a region that was shown to contribute to coreceptor binding. Exposure of this epitope occurred in the absence of CD4 binding, suggesting that the envelope glycoprotein of pathogenic SHIV(SF33A) clones folded in a conformation that was primed for interaction with CXCR4 or for the subsequent step of fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号