共查询到20条相似文献,搜索用时 15 毫秒
1.
Long He Osong Kwon Min Soo Kim Hiroyuki Osada Jong Seog Ahn Bo Yeon Kim 《FEBS letters》2009,583(5):903-4559
Endoplasmic reticulum stress (ER-stress) is associated with ataxia telangiectasia mutated (ATM) gene. We present here conclusive data showing that ATM blocks ER-stress induced by tunicamycin or ionizing radiation (IR). X-box protein-1 (XBP-1) splicing, GRP78 expression and caspase-12 activation were increased by tunicamycin or IR in Atm-deficient AT5BIVA fibroblasts. Activation of caspase-12 and caspase-3 by tunicamycin was significantly reduced in cells transfected with wild-type Atm (AT5BIVA/wtATM). Atm knockdown by siRNA, however, noticeably elevated ER-stress and chemosensitivity to tunicamycin. In summary, we present substantial data demonstrating that ATM blocks the ER stress signaling associated with cancer cell proliferation. 相似文献
2.
Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response 总被引:3,自引:0,他引:3
Mitochondria have long been considered to be the powerhouse of the living cell, generating energy in the form of the molecule ATP via the process of oxidative phosphorylation. In the past 20 years, it has been recognised that they also play an important role in the implementation of apoptosis, or programmed cell death. More recently it has become evident that mitochondria also participate in the orchestration of cellular defence responses. At physiological concentrations, the gaseous molecule nitric oxide (NO) inhibits the mitochondrial enzyme cytochrome c oxidase (complex Ⅳ) in competition with oxygen. This interaction underlies the mitochondrial actions of NO, which range from the physiological regulation of cell respiration, through mitochondrial signalling, to the development of “metabolic hypoxia”-a situation in which, although oxygen is available, the cell is unable to utilise it. 相似文献
3.
Loading cells with the calcium chelator BAPTA-AM is an analytical tool which has been used to suppress a rise in cytoplasmic calcium activity under various experimental conditions and thus, to evaluate the role of elevated cytoplasmic calcium levels in the process under investigation. BAPTA-AM may, however, not only have an isolated effect on cytoplasmic processes but also on functions of other subcellular compartments such as the endoplasmic reticulum (ER). Under conditions associated with ER dysfunction, the unfolded protein response is activated which is characterized by suppression of translation and processing of xbp1 mRNA, resulting in activation of the expression of genes coding for ER stress proteins. To investigate whether BAPTA-AM causes ER stress, primary neuronal cell cultures were loaded with varying amounts of BAPTA-AM. Exposure of cells to BAPTA-AM induced a marked rise in processed xbp1 mRNA levels, correlating with exposure times and BAPTA-AM concentrations in the medium used for loading. The increase in processed xbp1 mRNA was associated with suppression of protein synthesis and induction of cell injury. The results of this study indicate that loading primary neuronal cell cultures with BAPTA-AM activates xbp1 processing, implying that this calcium chelator does not have an isolated effect on cytoplasmic calcium activity but also an affect on ER function. 相似文献
4.
Benham AM 《Cold Spring Harbor perspectives in biology》2012,4(8):a012872
In a complex multicellular organism, different cell types engage in specialist functions, and as a result, the secretory output of cells and tissues varies widely. Whereas some quiescent cell types secrete minor amounts of proteins, tissues like the pancreas, producing insulin and other hormones, and mature B cells, producing antibodies, place a great demand on their endoplasmic reticulum (ER). Our understanding of how protein secretion in general is controlled in the ER is now quite sophisticated. However, there remain gaps in our knowledge, particularly when applying insight gained from model systems to the more complex situations found in vivo. This article describes recent advances in our understanding of the ER and its role in preparing proteins for secretion, with an emphasis on glycoprotein quality control and pathways of disulfide bond formation. 相似文献
5.
Haeyeon Jang Yukyung Jun Suyeon Kim Eunjeong Kim Yeonjoo Jung Byung Jo Park Jinseon Lee Jhingook Kim Sanghyuk Lee Jaesang Kim 《Cell death & disease》2021,12(4)
In this study, we report a novel function of FCN3 (Ficolin 3), a secreted lectin capable of activating the complement pathway, as a tumor suppressor of lung adenocarcinoma (LUAD). First, the expression of FCN3 was strongly down-regulated in cancer tissues compared to matched normal lung tissues, and down-regulation of FCN3 was shown to be significantly correlated with increased mortality among LUAD patients. Interestingly, while ectopic expression of FCN3 led to cell cycle arrest and apoptosis in A549 and H23 cells derived from LUAD, the secreted form of the protein had no effect on the cells. Rather, we found evidence indicating that activation of the unfolded protein response from endoplasmic reticulum (ER) stress is induced by ectopic expression of FCN3. Consistently, inhibition of ER stress response led to enhanced survival of the LUAD cells. Of note, the fibrinogen domain, which is not secreted, turned out to be both necessary and sufficient for induction of apoptosis when localized to ER, consistent with our proposed mechanism. Collectively, our data indicate that FCN3 is a tumor suppressor gene functioning through induction of ER stress.Subject terms: Non-small-cell lung cancer, Apoptosis, Endoplasmic reticulum 相似文献
6.
The kinase inhibitor sorafenib induces cell death through a process involving induction of endoplasmic reticulum stress 总被引:1,自引:0,他引:1
Rahmani M Davis EM Crabtree TR Habibi JR Nguyen TK Dent P Grant S 《Molecular and cellular biology》2007,27(15):5499-5513
Sorafenib is a multikinase inhibitor that induces apoptosis in human leukemia and other malignant cells. Recently, we demonstrated that sorafenib diminishes Mcl-1 protein expression by inhibiting translation through a MEK1/2-ERK1/2 signaling-independent mechanism and that this phenomenon plays a key functional role in sorafenib-mediated lethality. Here, we report that inducible expression of constitutively active MEK1 fails to protect cells from sorafenib-mediated lethality, indicating that sorafenib-induced cell death is unrelated to MEK1/2-ERK1/2 pathway inactivation. Notably, treatment with sorafenib induced endoplasmic reticulum (ER) stress in human leukemia cells (U937) manifested by immediate cytosolic-calcium mobilization, GADD153 and GADD34 protein induction, PKR-like ER kinase (PERK) and eukaryotic initiation factor 2alpha (eIF2alpha) phosphorylation, XBP1 splicing, and a general reduction in protein synthesis as assessed by [35S]methionine incorporation. These events were accompanied by pronounced generation of reactive oxygen species through a mechanism dependent upon cytosolic-calcium mobilization and a significant decline in GRP78/Bip protein levels. Interestingly, enforced expression of IRE1alpha markedly reduced sorafenib-mediated apoptosis, whereas knockdown of IRE1alpha or XBP1, disruption of PERK activity, or inhibition of eIF2alpha phosphorylation enhanced sorafenib-mediated lethality. Finally, downregulation of caspase-2 or caspase-4 by small interfering RNA significantly diminished apoptosis induced by sorafenib. Together, these findings demonstrate that ER stress represents a central component of a MEK1/2-ERK1/2-independent cell death program triggered by sorafenib. 相似文献
7.
Wenming Li 《Autophagy》2018,14(6):1094-1096
Chaperone-mediated autophagy (CMA), a form of selective autophagy, maintains cellular proteostasis in response to diverse stress conditions. Whether and how endoplasmic reticulum (ER) stress triggers CMA remains elusive. In our recent study, we demonstrate that various types of ER stress activate the CMA pathway via an EIF2AK3/PERK-MAP2K4/MKK4-MAPK14/p38-dependent manner. We term this process ERICA for ER stress-induced chaperone-mediated autophagy. This pathway is activated in response to stress associated with Parkinson disease and is required for the viability of the SNc dopaminergic neurons in an animal model of Parkinson disease. 相似文献
8.
9.
《FEBS letters》2014,588(23):4448-4456
Endothelial cells express very low density lipoprotein receptor (VLDLr). Beyond the function as peripheral lipoprotein receptor, other roles of VLDLr in endothelial cells have not been completely unraveled. In the present study, human umbilical vein endothelial cells were subjected to hypoxia, and VLDLr expression, endoplasmic reticulum (ER) stress, and apoptosis were assessed. Hypoxia triggered endothelial ER stress and apoptosis, and induced VLDLr expression. Silencing or stabilization of HIF-1α reduced and enhanced VLDLr expression, respectively. HIF-1α affected vldlr promoter activity by interacting with a hypoxia-responsive element (HRE). Knockdown or overexpression of VLDLr alleviated and exacerbated hypoxia-induced ER stress and apoptosis, respectively. Thus, hypoxia induces VLDLr expression through the interaction of HIF-1α with HRE at the vldlr promoter. VLDLr then mediates ER stress and apoptosis. 相似文献
10.
11.
12.
Involvement of the stress protein HSP47 in procollagen processing in the endoplasmic reticulum 总被引:13,自引:3,他引:13 下载免费PDF全文
《The Journal of cell biology》1992,117(4):903-914
The 47,000-D collagen-binding glycoprotein, heat shock protein 47 (HSP47), is a stress-inducible protein localized in the ER of collagen- secreting cells. The location and collagen-binding activity of this protein led to speculation that HSP47 might participate in collagen processing. Chemical crosslinking studies were used to test this hypothesis both before and after the perturbation of procollagen processing. The association of procollagen with HSP47 was demonstrated using cleavable bifunctional crosslinking reagents. HSP47 and procollagen were shown to be coprecipitated by the treatment of intact cells with anti-HSP47 or with anticollagen antibodies. Furthermore, several proteins residing in the ER were noted to be crosslinked to and coprecipitated with HSP47, suggesting that these ER-resident proteins may form a large complex in the ER. When cells were heat shocked, or when stable triple-helix formation was inhibited by treatment with alpha,alpha'-dipyridyl, coprecipitation of procollagen with HSP47 was increased. This increase was due to the inhibition of procollagen secretion and to the accumulation of procollagen in the ER. Pulse label and chase experiments revealed that coprecipitated procollagen was detectable as long as procollagen was present in the endoplasmic reticulum of alpha,alpha'-dipyridyl-treated cells. Under normal growth conditions, coprecipitated procollagen was observed to decrease after a chase period of 10-15 min, whereas total procollagen decreased only after 20-25 min. In addition, the intracellular association between HSP47 and procollagen was shown to be disrupted by a change in physiological pH, suggesting that the dissociation of procollagen from HSP47 is pH dependent. These findings support a specific role for HSP47 in the intracellular processing of procollagen, and provide evidence of a new category of "molecular chaperones" in terms of its substrate specificity and the dissociation mechanism. 相似文献
13.
M G Rosenfeld E E Marcantonio J Hakimi V M Ort P H Atkinson D Sabatini G Kreibich 《The Journal of cell biology》1984,99(3):1076-1082
Ribophorins are two transmembrane glycoproteins characteristic of the rough endoplasmic reticulum, which are thought to be involved in the binding of ribosomes. Their biosynthesis was studied in vivo using lines of cultured rat hepatocytes (clone 9) and pituitary cells (GH 3.1) and in cell-free synthesis experiments. In vitro translation of mRNA extracted from free and bound polysomes of clone 9 cells demonstrated that ribophorins are made exclusively on bound polysomes. The primary translation products of ribophorin messengers obtained from cultured hepatocytes or from regenerating livers co-migrated with the respective mature proteins, but had slightly higher apparent molecular weights (2,000) than the unglycosylated forms immunoprecipitated from cells treated with tunicamycin. This indicates that ribophorins, in contrast to all other endoplasmic reticulum membrane proteins previously studied, contain transient amino-terminal insertion signals which are removed co-translationally. Kinetic and pulse-chase experiments with [35S]methionine and [3H]mannose demonstrated that ribophorins are not subjected to electrophoretically detectable posttranslational modifications, such as proteolytic cleavage or trimming and terminal glycosylation of oligosaccharide side chain(s). Direct analysis of the oligosaccharides of ribophorin l showed that they do not contain the terminal sugars characteristic of complex oligosaccharides and that they range in composition from Man8GlcNAc to Man5GlcNAc. These findings, as well as the observation that the mature proteins are sensitive to endoglycosidase H and insensitive to endoglycosidase D, are consistent with the notion that the biosynthetic pathway of the ribophorins does not require a stage of passage through the Golgi apparatus. 相似文献
14.
Anticipating endoplasmic reticulum stress. A novel early response before pathogenesis-related gene induction 总被引:5,自引:1,他引:5 下载免费PDF全文
When it is attacked by a pathogen, a plant produces a range of defense-related proteins. Many of these are synthesized by the rough endoplasmic reticulum (RER) to be secreted from the cell or deposited in vacuoles. Genes encoding endoplasmic reticulum (ER)-resident chaperones, such as the lumenal binding protein (BiP), are also induced under these conditions. Here, we show that BiP induction occurs systemically throughout the plant. Furthermore, this induction occurs rapidly and precedes expression of genes encoding pathogenesis-related (PR) proteins. The underlying signal transduction pathway was shown to be independent of the signaling molecule salicylic acid and the unfolded protein response pathway. In addition, BiP induction was independent of PR gene induction. Overproduction of BiP alone was not sufficient to cause induction of PR gene expression; however, limiting the amount of BiP in the ER lumen via superimposed ER stress inhibited the induction of PR gene expression. We propose that the induction of BiP expression during plant-pathogen interactions is required as an early response to support PR protein synthesis on the RER and that a novel signal transduction pathway exists to trigger this rapid response. 相似文献
15.
Kang Nian Yap KayLene Yamada Shelby Zikeli Hippokratis Kiaris Wendy R. Hood 《Biological reviews of the Cambridge Philosophical Society》2021,96(2):541-556
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals. 相似文献
16.
17.
Liao J Sun A Xie Y Isse T Kawamoto T Zou Y Ge J 《Molecular medicine (Cambridge, Mass.)》2012,18(1):785-793
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) has been characterized as an important mediator of endogenous cytoprotection in the heart. This study was designed to examine the role of ALDH2 knockout (KO) in the regulation of cardiac function after endoplasmic reticulum (ER) stress. Wild-type (WT) and ALDH2 KO mice were subjected to a tunicamycin challenge, and the echocardiographic property was examined. Protein levels of six items--78 kDa glucose-regulated protein (GRP78), phosphorylation of eukaryotic initiation factor 2 subunit α (p-eIF2α), CCAAT/enhancer-binding protein homologous protein (CHOP), phosphorylation of Akt, p47(phox) nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and 4-hydroxynonenal--were determined by using Western blot analysis. Cytotoxicity and apoptosis were estimated using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) assay and caspase-3 activity, respectively. ALDH2 deficiency exacerbated cardiac contractile dysfunction and promoted ER stress after ER stress induction, manifested by the changes of ejection fraction and fractional shortening. In vitro study revealed that tunicamycin significantly upregulated the levels of GRP78, p-eIF2α, CHOP, p47(phox) NADPH oxidase and 4-hydroxynonenal, which was exacerbated by ALDH2 knockdown and abolished by ALDH2 overexpression, respectively. Overexpression of ALDH2 abrogated tunicamycin-induced dephosphorylation Akt. Inhibition of phosphatidylinositol 3-kinase using LY294002 did not affect ALDH2-conferred protection against ER stress, although LY294002 reversed the antiapoptotic action of ALDH2 associated with p47(phox) NADPH oxidase. These results suggest a pivotal role of ALDH2 in the regulation of ER stress and ER stress-induced apoptosis. The protective role of ALDH2 against ER stress-induced cell death was probably mediated by Akt via a p47(phox) NADPH oxidase-dependent manner. These findings indicate the critical role of ALDH2 in the pathogenesis of ER stress in heart disease. 相似文献
18.
Magdalena J. Lorenowicz 《Experimental cell research》2009,315(16):2683-2689
Wnt proteins are members of a highly conserved family of signalling molecules that play a central role in development and disease. During the past years, the different signalling pathways that are triggered by Wnt proteins have been studied in detail, but it is still largely unknown how a functional Wnt protein is produced and secreted. The recent finding that Wnt proteins are post-translationally modified and the discovery of the Wnt binding protein Wntless and its trafficking by the retromer complex show that Wnt secretion is a complex and highly regulated process. In this review, we will give an overview of the Wnt maturation and secretion pathway and discuss how this process may influence the spreading and signalling activity of Wnt. 相似文献
19.