首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Modifications of ribosomes have been investigated in human epidermoid carcinoma-2 cells at different stages of herpes simplex virus type 1 infection. Very early in infection, there is an increase in ribosomal protein S6 phosphorylation even in the absence of serum. The same result is obtained in the presence of actinomycin D. At early infection time, ribosomal proteins S2, S3a and Sa are newly phosphorylated. At early and early-late times, three phosphorylated non-ribosomal proteins (v1, v2 and v3) are differently associated temporally to ribosomes. Analyses of proteins extracted from 40S subunits, 80S ribosomes and polysomes show that v1 and v2 are distributed differently among the different ribosomal populations. S6 phosphopeptides were found to be identical after serum stimulation and after viral infection. In every case phosphoserine and phosphothreonine were identified in S6. Only phosphoserine was found in other phosphorylated proteins. Our results indicate that herpes simplex virus type 1 is able to modify pre-existing ribosomes: (i) by stimulating a pre-existing kinase for S6 phosphorylation even in the absence of serum and of viral genome expression; (ii) by inducing new specific kinase activity(ies); and (iii) by association of new, phosphorylated proteins to ribosomes. These ribosomal modifications are correlated with changes in protein synthesis, as shown by two-dimensional electrophoretic analyses of newly synthesized 35S-labelled proteins.  相似文献   

2.
Synthesis and assembly of ribosomal proteins into mature ribosomes persist late after infection of cells with herpes simplex virus type 1, while synthesis of β-actin is drastically shut off. Since mRNAs encoding ribosomal proteins and β-actin undergo concomitant degradation in infected HeLa cells, we have advanced the hypothesis that translation of the remaining mRNAs is differentially controlled after infection. The behaviour of mRNAs for three ribosomal proteins and for β-actin was investigated during the course of infection. In uninfected cells, β-actin mRNAs are associated with large polyribosomes, while only a part of ribosomal protein mRNAs are present in polyribosomes. In the course of infection, β-actin mRNAs are released from the ribosomes and are sequestered with 40S ribosomal subunits. Simultaneously, ribosomal protein mRNAs become associated with an increased number of ribosomes, even late in infection. In addition, virally induced phosphorylation of ribosomal protein S6 is more efficient in pre-existing ribosomes than in newly assembled ribosomes. These results indicate that in infected cells (i) translation of β-actin mRNA is selectively inhibited at a step necessary for binding the 60S ribosomal subunits; (ii) the rate of initiation of translation of ribosomal protein mRNAs increases after infection; and (iii) it is likely that translation of ribosomal protein mRNAs takes place preferentially on pre-existing ribosomes. Received: 5 February 1997 / Accepted: 28 May 1997  相似文献   

3.
In BHK cells infected with pseudorabies virus, there was a substantial increase in the phosphorylation of ribosomal protein S6. This increase occurred between 2 and 4 h after infection and persisted at least until 9 h. We estimated that in mock-infected cells S6 contained, on an average, one phosphate group per protein chain, whereas in infected cells this rose to between four and five phosphate groups per protein chain. A second ribosomal protein, either S16 or S18, was also phosphorylated after infection. No increase in cyclic AMP was found at the time of phosphorylation. We also found an increased phosphorylation of S6 in herpes simplex virus-infected BHK cells.  相似文献   

4.
Herpes simplex virus genes form several groups whose expression is coordinately regulated and sequentially ordered in a cascade fashion. Most of the products of the first group, the alpha genes, appear to have regulatory functions. We report that the alpha proteins, infected cell proteins 4, 0, 22, and 27 of herpes simplex virus 1 and 4, 0, and 27 of herpes simplex virus 2, were labeled in the isolated nuclei of infected HeLa cells with [alpha-32P]GTP or [alpha-32P]ATP late in infection and that these proteins represent the largest group of virus-specific proteins labeled in this fashion. Studies with [2-3H]ATP, in which the label is in the purine ring, showed that a portion of the label in alpha proteins and in at least one other infected cell protein is due to nucleotidylylation. Analyses of the labeling reactions in nuclei of (i) cells infected with temperature-sensitive mutants at nonpermissive temperatures, (ii) cells infected with wild-type virus and harvested at different times postinfection, and (iii) cells treated with inhibitors of protein synthesis or of synthesis of viral DNA led to the conclusion that viral gene functions expressed after the synthesis of alpha proteins are required for the labeling of the alpha proteins with [alpha-32P]GTP. We conclude that several of the alpha proteins are extensively posttranslationally modified and that these modifications include nucleotidylylation.  相似文献   

5.
The complements of ribosomal proteins in growing and starved cells of Tetrahymena pyriformis strain GL were examined by two-dimensional gel electrophoresis. In growing cells, the 40-S ribosomal subunit contained 30 proteins, 4 of which migrated toward the anode at pH 8.6, while the 60-S ribosomal subunit contained 46 proteins, 9 of which migrated toward the anode at pH 8.6. When exponentially growing cells were transferred into a non-nutrient medium pronounced phosphorylation of a single 40-S ribosomal subunit protein, S6, was induced. The phosphorylation was very specific; more than 99.5% of the [32P]phosphate incorporated into ribosomal proteins was associated with S6. Phosphate was incorporated into S6 as O-phosphoserine and O-phosphothreonine. Two-dimensional gel electrophoresis indicated that the complement of proteins associated with the ribosomes isolated from starved cells differed from that of growing cells. Careful examination, however, suggested that except for the phosphorylation of certain ribosomal proteins in starved cells, the observed differences did not reflect starvation-induced changes in vivo, but most probably different levels of artifactual modifications (limited proteolysis) during the preparation of the ribosomes.  相似文献   

6.
To investigate the role of varicella-zoster virus (VZV) open reading frame 47 (ORF47) protein kinase during infection, a VZV mutant was generated in which two contiguous stop codons were introduced into ORF47, thus eliminating expression of the ORF47 kinase. ORF47 kinase was not essential for the growth of VZV in cultured cells, and the growth rate of the VZV mutant lacking ORF47 protein was indistinguishable from that of parental VZV. Nuclear extracts from cells infected with parental VZV contained several phosphorylated proteins which were not detected in extracts from cells infected with the ORF47 mutant. The herpes simplex virus type 1 (HSV-1) UL13 protein (the homolog of VZV ORF47 protein) is responsible for the posttranslational processing associated with phosphorylation of HSV-1 ICP22 (the homolog of VZV ORF63 protein). Immunoprecipitation of 32P-labeled proteins from cells infected with parental virus and those infected with ORF47 mutant virus yielded similar amounts of the VZV phosphoproteins encoded by ORF4, ORF62, ORF63, and ORF68 (VZV gE), and the electrophoretic migration of these proteins was not affected by the lack of ORF47 kinase. Therefore, while the VZV ORF47 protein is capable of phosphorylating several cellular or viral proteins, it is not required for phosphorylation of the ORF63 protein in virus-infected cells.  相似文献   

7.
The specificity of herpes simplex virus type 1-specific cytotoxic T cells was examined with target cells expressing either input viral structural antigens or antigens resulting from permissive infection or cells from an interrupted infection in which they expressed predominantly nonstructural immediate-early proteins. These studies indicated that only an insignificant minority of cytotoxic T cells recognized the input viral antigens, whereas a significant proportion (20 to 35%) recognized target cells that expressed the immediate-early proteins despite the absence of serologically detectable viral antigens upon the infected cell surface. The finding that a significant proportion of cytotoxic T-cell populations obtained from the draining lymph nodes of mice acutely infected with herpes simplex virus type 1 also recognized immediately-early gene-expressing target cells indicates the importance of nonstructural herpes simplex virus proteins to antiviral immunity in vivo.  相似文献   

8.
Nucleolar modifications induced by herpes simplex virus type 1 (HSV1) infection were studied at the ultrastructural level with special attention to the fate of a family of proteins serologically related to the nucleolar 100 kDa protein. Immunocytochemical techniques revealed that antigenic sites related to these proteins were associated with nucleoli in a pattern similar to that observed with non-infected cells. In addition, the "dense bodies" induced by HSV infection were heavily decorated by antibodies to the 100 kDa protein. Neither DNA nor RNA was detectable in the latter by cytochemical techniques. Therefore, it appears that "dense bodies" are exclusively proteinaceous and contain at least one host protein implicated in ribosomal RNA synthesis. An accumulation of 100 kDa protein in extra-nucleolar structures might account for previously reported defects in ribosomal RNA expression during HSV infection.  相似文献   

9.
10.
We have examined the ribosomal protein kinase activities in partially purified cytoplasmic extracts from HeLa cells infected with vaccinia virus. We found an activity or activities, absent from mock-infected cells, that was capable of phosphorylating the proteins S2 and S13 in vitro. The ribosomes phosphorylated in vitro exhibited the same multiple phosphorylation of S2 found in vivo, at least 3 phosphoryl residues being seen, and the same mono-phosphorylation of S13. Also as in vivo, ribosomal protein S2 contained phosphothreonine as well as phosphoserine, whereas S13 contained only phosphoserine. This strongly suggests that these new protein kinase activities are responsible for the ribosomal protein phosphorylations that occur during infection with vaccinia virus.  相似文献   

11.
M G Katze  M B Agy 《Enzyme》1990,44(1-4):332-346
The following reviews the role of mRNA stability in the regulation of both viral and cellular gene expression in virus-infected cells. Indeed, several eukaryotic viruses, including the human immunodeficiency virus, HIV-1, regulate cellular protein synthesis via such control mechanisms. The following systems will be discussed: (i) the degradation of viral and cellular mRNAs in cells infected by herpes simplex virus (HSV) and advances made using the HSV virion host shutoff mutant; (ii) the degradation of viral and cellular mRNA and ribosomal RNA in cells infected by vaccinia virus and the possible role of the oligoadenylate synthetase-RNase L pathways; (iii) the turnover of RNAs in cells infected by encephalomyocarditis virus, reovirus, and La Crosse virus; and finally (iv) recent studies from our laboratory on the degradation of cellular mRNAs in cells infected by HIV-1.  相似文献   

12.
In uninfected cells the G2/M transition is regulated by cyclin kinase complex containing cdc2 and, initially, cyclin A, followed by cyclin B. cdc2 is downregulated through phosphorylation by wee-1 and myt-1 and upregulated by cdc-25C phosphatase. We have examined the accumulation and activities of these proteins in cells infected with wild type and mutants of herpes simplex virus 1. The results were as follows. (i) Cyclin A and B levels were reduced beginning 4 h after infection and were undetectable at 12 to 16 h after infection. (ii) cdc2 protein also decreased in amount but was detectable at all times after infection. In addition, a fraction of cdc2 protein from infected cells exhibited altered electrophoretic mobility in denaturing gels. (iii) The levels of cdk7 or myt-1 proteins remained relatively constant throughout infection, whereas the level of wee-1 was significantly decreased. (iv) cdc-25C formed novel bands characterized by slower electrophoretic mobility that disappeared after treatment with phosphatase. In addition, one phosphatase-sensitive band reacted with MPM-2 antibody that recognizes a phosphoepitope phosphorylated exclusively in M phase. (v) cdc2 accumulating in infected cells exhibited kinase activity. The activity of cdc2 was higher in infected cell lysates than those of corresponding proteins present in lysates of mock-infected cells even though cyclins A and B were not detectable in lysates of infected cells. (vi) The decrease in the levels of cyclins A and B, the increase in activity of cdc2, and the hyperphosphorylation of cdc-25C were mediated by UL13 and α22/US1.5 gene products. In light of its normal functions, the activated cdc2 kinase may play a role in the changes in the morphology of the infected cell. These results are consistent with the accruing evidence that herpes simplex virus scavenges the cell for useful cell cycle proteins and subverts them for its own use.  相似文献   

13.
We have isolated a new cyclic AMP-independent protein kinase activity induced in HeLa cells by infection with herpes simplex virus type 1. Induction of the enzyme does not occur in cells treated with cycloheximide at the time of infection, or in cells infected with UV-inactivated herpes simplex virus type 1. The amount of enzyme induced in infected cells is dependent upon the multiplicity of infection. An enzyme with identical properties to the appearing in infected HeLa cells is also induced by herpes simplex virus type 1 in BHK cells.  相似文献   

14.
The topography of polysomal ribosomes in mock-infected and in Sindbis virus- and vesicular stomatitis virus-infected BHK cells was investigated using a double, radioactive labelling technique. Ribosomal proteins in intact polysomes were surface labelled by reductive methylation using [14C]formaldehyde. Following removal of ribosomal RNA, proteins were denatured in 6 M guanidine and labelled with [3H]borohydride. Labelled ribosomal proteins were separated by electrophoresis in two-dimensional gels and the 3H/14C ratio for each ribosomal protein was taken as an index of its relative surface exposure in intact ribosomes. Comparison of the ratios for individual ribosomal proteins in Sindbis virus-infected vs. control polysomes indicated that proteins L7, L8, L17, L26 and S19 became more 'buried' and others such as L4, L29, L36, S2 and S26 became more 'exposed' in infected cells. Most of the topographical alterations occurred in the large ribosomal subunit. In contrast, infection of BHK cells with vesicular stomatitis virus induced little or no topographical alteration.  相似文献   

15.
Synthetic peptides have been used to investigate the site specificity of highly purified virus induced protein kinase, a recently discovered protein kinase isolated from cells infected with alpha-herpesviruses. The enzyme from cells infected with pseudorabies virus can catalyse the phosphorylation of both seryl and threonyl residues in peptides that contain several arginyl residues on the amino-terminal side of the target residue. At least two arginyl residues are required, and the best substrates examined contain four to six such residues. Virus induced protein kinase differs in site specificity from protein kinase C in being unable to phosphorylate peptides in which multiple arginyl residues are on the carboxyl-terminal side of the target residue, or to phosphorylate peptides in which the arginyl residues are replaced by ornithyl residues. Virus induced protein kinase from cells infected with herpes simplex virus type I had similar substrate preferences to virus induced protein kinase from cells infected with pseudorabies virus. Although virus induced protein kinase and the cyclic AMP-dependent protein kinase have several peptide substrates in common, their relative preferences for these (as indicated by Km values) were found to be very different.  相似文献   

16.
Studies were performed to identify in cytoplasmic extracts of Krebs II ascites cells protein kinase activities that might be responsible for the phosphorylation of the ribosomal proteins previously identified as phosphoproteins in these cells in vivo. Column chromatography resolved a casein kinase activity that could use ATP or GTP as a phosphoryl donor to phosphorylate, in ribosomes, exclusively the acidic 60S phosphoprotein(s) phosphorylated in vivo. A second casein kinase fraction could use ATP, only, in a similar reaction, but also contained protein kinase activity with respect to other ribosomal proteins, including the basic ribosomal protein phosphorylated in vivo, ribosomal protein S6. This latter was also among several proteins phosphorylated by an activity in the cyclic AMP-independent histone kinase fraction.  相似文献   

17.
The VP22 protein of herpes simplex virus type 2 (HSV-2) is a major component of the virion tegument. Previous work with HSV-1 indicated that VP22 is phosphorylated during infection, and phosphorylation may play a role in modulating VP22 localization in infected cells. It is not clear, however, when phosphorylation occurs in infected cells or how it is regulated. Less is known about the synthesis and phosphorylation of HSV-2 VP22. To study the complete biosynthetic history of HSV-2 VP22, we generated a monoclonal antibody to the carboxy terminus of VP22. Using immunoprecipitation and Western blot analyses, we show that HSV-2 VP22 can be found in three distinct isoforms in infected cells, two of which are phosphorylated. Like HSV-1 VP22, HSV-2 VP22 is synthesized ca. 4 h after infection, and the isoform later incorporated into virions is hypophosphorylated. In addition, we demonstrate for the first time (i) that newly synthesized VP22 is phosphorylated rapidly after synthesis, (ii) that this phosphorylation occurs in a virus-dependent manner, (iii) that the HSV-2 kinase UL13 is capable of inducing phosphorylation of VP22 in the absence of other viral proteins, (iv) that phosphorylated VP22 is very stable in infected cells, (v) that phosphorylated isoforms of VP22 are gradually dephosphorylated late in infection to produce the virion tegument form, and (vi) that this dephosphorylation occurs independently of viral DNA replication or virion assembly. These results indicate that HSV-2 VP22 is a stable protein that undergoes highly regulated, virus-dependent phosphorylation events in infected cells.  相似文献   

18.
The herpes simplex virus 1 US11 gene encodes a site- and conformation-specific RNA binding regulatory protein. We fused the coding sequence of this protein with that of beta-galactosidase, expressed the chimeric gene in Escherichia coli, and purified a fusion protein which binds RNA in the same way as the infected cell protein. The fusion protein was used to generate anti-US11 monoclonal antibody. Studies with this antibody showed that US11 protein is a viral structural protein estimated to be present in 600 to 1,000 copies per virion. The great majority of cytoplasmic US11 protein was found in association with the 60S subunit of infected cell ribosomes. US11 protein associates with ribosomes both late in infection at the time of its synthesis and at the time of infection after its introduction into the cytoplasm by the virion. US11 protein expressed in an uninfected cell line stably transfected with the US11 gene associates with ribosomal 60S subunits and localizes to nucleoli, suggesting that US11 protein requires no other viral functions for these associations.  相似文献   

19.
20.
Membranes prepared from HEp-2 cells infected with herpes simplex virus and free from soluble proteins, virus, ribosomes, and other cellular constituents were solubilized and subjected to electrophoresis on acrylamide gels. The electropherograms showed the following. (i) The synthesis of host proteins and glycoproteins ceases after infection. However, the spectrum of host proteins in membranes remains unaltered. (ii) Between 4 and 22 hr postinfection, at least four glycoproteins are synthesized and bound to the smooth cytoplasmic membranes. On electrophoresis, these glycoproteins form two major and two minor bands in the gel and migrate with proteins ranging from 50,000 to 100,000 daltons in molecular weight. (iii) The same glycoproteins are present in all membranes fractionated by density and in partially purified virus. The implications of the data are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号